POLÍTICA ENERGÉTICA Y NDCs EN AMÉRICA LATINA Y EL CARIBE:

EVALUACIÓN DE LAS POLÍTICAS ACTUALES DE DESARROLLO ENERGÉTICO DE LA REGIÓN, COMO CONTRIBUCIÓN AL CUMPLIMIENTO DE LOS COMPROMISOS EN MATERIA DE CAMBIO CLIMÁTICO

BASES PARA UN DEBATE NECESARIO
El presente documento fue elaborado por la Organización Latinoamericana de Energía – OLADE bajo la coordinación de:

Alfonso Blanco
Secretario Ejecutivo
OLADE

Andres Schuschny
Director de Estudios, Proyectos e Información
OLADE

El autor del presente documento es:
Fabio García
Especialista Senior en Planificación Energética
OLADE

Con el aporte técnico de los consultores:
Luis Guerra
Jaime Guillén
Beno Ruchansky

Se agradece a **Mario Andrés Merchán** de EUEI PDF y a **Martha Vides** de OLADE, por la revisión del documento y sus comentarios.

El presente estudio fue financiado por:

![EUEI PDF](image)

European Union Energy Initiative
Partnership Dialogue Facility (EUEI PDF)

En nombre de: [Logos de diferentes organizaciones]

Traducción al idioma inglés: **Nicholas Levine**

Quito, Ecuador, octubre de 2018

Las opiniones expresadas por los autores en este documento, no necesariamente reflejan en su totalidad el punto de vista de los Estados Miembros de OLADE.

Se permite la reproducción total o parcial del contenido de este documento, a condición de que se mencione la fuente.

Diagramación y diseño: **Carlos Sirfierro**

Diseño de contenido gráfico (Tablas - gráficos): **María Daniela Pérez**
Contenido

III. Abreviaturas y acrónimos .. 26
IV PROLOGO ...27
1. Resumen ... 29
2. Introducción .. 31
3. Diagnóstico regional en el año base .. 33
 3.1 Brasil ... 34
 3.2 México .. 36
 3.3 América Central .. 38
 3.4 Subregión Andina .. 40
 3.5 Cono Sur .. 42
 3.6 El Caribe .. 44
 3.7 América Latina y El Caribe (ALC) .. 46
4. El sector energía y las NDCs de la región América Latina y el Caribe .. 50
 4.1 Consideraciones generales .. 50
 4.2 Consideraciones referentes al sector energía .. 52
 4.3 Hipótesis de trabajo ... 54
5. Construcción del escenario tendencial de línea base (BAU) ... 55
 5.1 Consideraciones generales .. 56
 5.2 Brasil ... 56
 5.2.1 Proyección del consumo final de energía ... 56
 5.2.2 Proyección de la generación eléctrica ... 58
 5.2.3 Proyección de la oferta total de energía .. 60
 5.3 México .. 61
 5.3.1 Proyección del consumo final de energía ... 61
 5.3.2 Proyección de la generación eléctrica ... 63
 5.3.3 Proyección de la oferta total de energía .. 64
 5.4 América Central .. 65
 5.4.1 Proyección del consumo final de energía ... 65
 5.4.2 Proyección de la generación eléctrica ... 67
 5.4.3 Proyección de la oferta total de energía .. 68
 5.5 Subregión Andina .. 69
 5.5.1 Proyección del consumo final de energía ... 69
 5.5.2 Proyección de la generación eléctrica ... 71
 5.5.3 Proyección de la oferta total de energía .. 72
 5.6 Cono Sur .. 73
 5.6.1 Proyección del consumo final de energía ... 73
 5.6.2 Proyección de la generación eléctrica ... 75
 5.6.3 Proyección de la oferta total de energía .. 76
 5.7 El Caribe .. 78
 5.7.1 Proyección del consumo final de energía ... 78
 5.7.2 Proyección de la generación eléctrica ... 80
 5.7.3 Proyección de la oferta total de energía ... 81
5.8 América Latina y El Caribe (ALC) ...82
5.8.1 Proyección del consumo final de energía ..82
5.8.2 Proyección de la generación eléctrica ...84
5.8.3 Proyección de la oferta total de energía ..85
6. Construcción del Escenario de Políticas Actuales (EPA) ..87
 6.1 Consideraciones generales ...88
 6.2 Brasil ...90
 6.2.1 Proyección del consumo final de energía ...90
 6.2.2 Proyección de la generación eléctrica ..91
 6.2.3 Proyección de la oferta total de energía ..95
 6.3 México ...96
 6.3.1 Proyección del consumo final de energía ...96
 6.3.2 Proyección de la generación eléctrica ..98
 6.3.3 Proyección de la oferta total de energía ..102
 6.4 América Central ...103
 6.4.1 Proyección del consumo final de energía ...103
 6.4.2 Proyección de la generación eléctrica ..105
 6.4.3 Proyección de la oferta total de energía ..112
 6.5 Subregión Andina ...113
 6.5.1 Proyección del consumo final de energía ...113
 6.5.2 Proyección de la generación eléctrica ..115
 6.5.3 Proyección de la oferta total de energía ..121
 6.6 Cono Sur ..123
 6.6.1 Proyección del consumo final de energía ...123
 6.6.2 Proyección de la generación eléctrica ..125
 6.6.3 Proyección de la oferta total de energía ..130
 6.7 El Caribe ..131
 6.7.1 Proyección del consumo final ...131
 6.7.2 Proyección de la generación eléctrica ..134
 6.7.3 Proyección de la oferta total de energía ..140
 6.8 América Latina y El Caribe (ALC) ...141
 6.8.1 Proyección del consumo final de energía ...141
 6.8.2 Proyección de la generación eléctrica ..143
 6.8.3 Proyección de la oferta total de energía ..147
7. Análisis comparativo de las emisiones de CO₂e de los escenarios EPA y BAU, en relación con las metas de reducción implícitas en los NDCs ..149
 7.1 Introducción ...150
 7.2 ..151
 7.3 México ...153
 7.4 América Central ...154
 7.5 Subregión Andina ...155
 7.6 Cono Sur ..156
 7.7 El Caribe ..157
 7.8 América Latina y El Caribe (ALC) ...158
8. Construcción del escenario orientado al cumplimiento de las NDCs (ECN)159
 8.1 Consideraciones generales ...160
9. Análisis de sensibilidad del escenario ECN, a los efectos del cambio climático........206
9.1 Consideraciones generales ...206
9.2 Brasil..208
9.2.1 Variación en el consumo total de electricidad208
9.2.2 Variación en la generación hidroeléctrica209
9.3 México ..209
9.3.1 Variación en el consumo total de electricidad209
9.3.2 Variación en la generación hidroeléctrica210
9.4 América Central ..211
9.4.1 Variación del consumo total de electricidad211
9.4.2 Variación de la generación hidroeléctrica211
9.5 Subregión Andina ..212
9.5.1 Variación del consumo total de electricidad212
9.5.2 Variación de la generación hidroeléctrica213
9.6 Cono Sur ..213
9.6.1 Variación del consumo total de electricidad213
9.6.2 Variación de la generación hidroeléctrica213
9.7 El Caribe ..214
9.7.1 Variación del consumo total de electricidad214
9.7.2 Variación de la generación hidroeléctrica215
8.8 América Latina y El Caribe (ALC) ...199
8.8.1 Proyección del consumo final de energía193
8.8.2 Proyección de la generación eléctrica ...195
8.8.3 Proyección de la oferta total de energía197
8.9 México ..169
8.9.1 Proyección del consumo final de energía169
8.9.2 Proyección de la generación eléctrica ...171
8.9.3 Proyección de la oferta total de energía173
8.10 Subregión Andina ...179
8.10.1 Proyección del consumo final de energía179
8.10.2 Proyección de la generación eléctrica ...182
8.10.3 Proyección de la oferta total de energía185
8.11 Cono Sur ..200
8.11.1 Proyección del consumo final de energía191
8.11.2 Proyección de la generación eléctrica ...193
8.11.3 Proyección de la oferta total de energía195
8.12 El Caribe ..175
8.12.1 Proyección del consumo final de energía175
8.12.2 Proyección de la generación eléctrica ...177
8.12.3 Proyección de la oferta total de energía180
8.13 América Central ..175
8.13.1 Proyección del consumo final de energía175
8.13.2 Proyección de la generación eléctrica ...177
8.13.3 Proyección de la oferta total de energía180
8.14 México ..169
8.14.1 Proyección del consumo final de energía169
8.14.2 Proyección de la generación eléctrica ...171
8.14.3 Proyección de la oferta total de energía173
8.15 Subregión Andina ...181
8.15.1 Proyección del consumo final de energía181
8.15.2 Proyección de la generación eléctrica ...182
8.15.3 Proyección de la oferta total de energía185
8.16 Cono Sur ..203
8.16.1 Proyección del consumo final de energía186
8.16.2 Proyección de la generación eléctrica ...188
8.16.3 Proyección de la oferta total de energía191
8.17 El Caribe ..193
8.17.1 Proyección del consumo final de energía193
8.17.2 Proyección de la generación eléctrica ...195
8.17.3 Proyección de la oferta total de energía197
8.18 América Latina y El Caribe (ALC) ...199
8.18.1 Proyección del consumo final de energía199
8.18.2 Proyección de la generación eléctrica ...200
8.18.3 Proyección de la oferta total de energía203
9.7.2 Variación de la generación hidroeléctrica ... 215
9.8 América Latina y El Caribe (ALC) .. 215
9.8.1 Variación del consumo total de electricidad .. 215
9.8.2 Variación de la generación hidroeléctrica ... 216

10. Análisis comparativo de los escenarios simulados, mediante indicadores energéticos y ambientales. .. 219
10.1 Consideraciones generales .. 219
10.2 Brasil .. 219
10.2.1 Proyección y estructura del consumo final de energía ... 219
10.2.2 Proyección y estructura de la generación eléctrica .. 220
10.2.3 Proyección y estructura de la oferta total de energía .. 221
10.2.4 Emisiones de CO2e de la generación eléctrica y porcentajes de reducción 222
10.2.5 Emisiones totales de CO2e de la matriz energética y porcentajes de reducción 224
10.3 México ... 226
10.3.1 Proyección y estructura del consumo final de energía ... 226
10.3.2 Proyección y estructura de la generación eléctrica .. 227
10.3.3 Proyección y estructura de la oferta total de energía .. 228
10.3.4 Emisiones de CO2e de la generación eléctrica y porcentajes de reducción 229
10.3.5 Emisiones totales de CO2e de la matriz energética y porcentajes de reducción 231
10.4 América Central .. 232
10.4.1 Proyección y estructura del consumo final de energía ... 232
10.4.2 Proyección y estructura de la generación eléctrica .. 234
10.4.3 Proyección y estructura de la oferta total de energía .. 235
10.4.4 Emisiones de CO2e de la generación eléctrica y porcentajes de reducción 236
10.4.5 Emisiones totales de CO2e de la matriz energética y porcentajes de reducción 238
10.5 Subregión Andina .. 239
10.5.1 Proyección y estructura del consumo final de energía ... 239
10.5.2 Proyección y estructura de la generación eléctrica .. 240
10.5.3 Proyección y estructura de la oferta total de energía .. 241
10.5.4 Emisiones de CO2e de la generación eléctrica y porcentajes de reducción 242
10.5.5 Emisiones totales de CO2e de la matriz energética y porcentajes de reducción 244
10.6 Cono Sur ... 245
10.6.1 Proyección y estructura del consumo final de energía ... 245
10.6.2 Proyección y estructura de la generación eléctrica .. 246
10.6.3 Proyección y estructura de la oferta total de energía .. 247
10.6.4 Emisiones de CO2e de la generación eléctrica y porcentajes de reducción 248
10.6.5 Emisiones totales de CO2e de la matriz energética y porcentajes de reducción 249
10.7 El Caribe ... 251
10.7.1 Proyección y estructura del consumo final de energía ... 251
10.7.2 Proyección y estructura de la generación eléctrica .. 252
10.7.3 Proyección y estructura de la oferta total de energía .. 253
10.7.4 Emisiones de CO2e de la generación eléctrica y porcentajes de reducción 254
10.7.5 Emisiones totales de CO$_2$e de la matriz energética y porcentajes de reducción ..255
10.8 América Latina y El Caribe (ALC) ..257
10.8.1 Proyección y estructura del consumo final de energía ...257
10.8.2 Proyección y estructura de la generación eléctrica ...258
10.8.3 Proyección y estructura de la oferta total de energía ...259
10.8.4 Emisiones de CO$_2$e de la generación eléctrica y porcentajes de reducción 260
10.8.5 Emisiones totales de CO$_2$e de la matriz energética y porcentajes de reducción ..262
11. Costos nivelados de energía eléctrica (LCOE), frente a la proyección de los costos internacionales de los combustibles ..265
11.1 Consideraciones generales ...265
11.2 Brasil ...267
11.2.1 Costos unitarios de inversión..267
11.2.2 Proyección de los LCOE por tecnologías ...268
11.2.3 Proyección de los costos totales de generación eléctrica ..269
11.2.4 Costo total de inversión en generación eléctrica ..270
11.2.5 Proyección de los LCOE ponderados por escenarios energéticos270
11.3 México ..272
11.3.1 Costos unitarios de inversión..272
11.3.2 Proyección de los LCOE por tecnologías ...272
11.3.3 Proyección de los costos totales de generación eléctrica ..273
11.3.4 Costo total de inversión en generación eléctrica ..274
11.3.5 Proyección de los LCOE ponderados por escenarios energéticos275
11.4 América Central ..276
11.4.1 Costos unitarios de inversión..276
11.4.2 Proyección de los LCOE por tecnologías ...276
11.4.3 Proyección de los costos totales de generación eléctrica ..277
11.4.4 Costo total de inversión en generación eléctrica ..278
11.4.5 Proyección de los LCOE ponderados por escenarios energéticos279
11.5 Subregión Andina ...280
11.5.1 Costos unitarios de inversión..280
11.5.2 Proyección de los LCOE por tecnologías ...280
11.5.3 Proyección de los costos totales de generación eléctrica ..281
11.5.4 Costo total de inversión en generación eléctrica ..282
11.5.5 Proyección de los LCOE ponderados por escenarios energéticos283
11.6 Cono Sur ..284
11.6.1 Costos unitarios de inversión..284
11.6.2 Proyección de los LCOE por tecnologías ...284
11.6.3 Proyección de los costos totales de generación eléctrica ..285
11.6.4 Costo total de inversión en generación eléctrica ..286
11.6.5 Proyección de los LCOE ponderados por escenarios energéticos287
11.7 El Caribe ...288
11.7.1 Costos unitarios de inversión..288
11.7.2 Proyección de los LCOE por tecnologías ...288
11.7.3 Proyección de los costos totales de generación eléctrica ..289
11.7.4 Costo total de inversión en generación eléctrica ..290
11.7.5 Proyección de los LCOE ponderados por escenarios energéticos....................291
11.8 América Latina y El Caribe (ALC)..291
11.8.1 Proyección de los costos totales de generación eléctrica.................................291
11.8.2 Valores de LCOE total, ponderados por escenario para ALC292
11.8.3 Costo total de inversión en generación eléctrica...294
12. Conclusiones ..295
12.1 Conclusiones por subregiones ...296
12.1.1 Brasil ..296
12.1.2 México ...296
12.1.3 América Central ...297
12.1.4 Subregión Andina ..297
12.1.5 Cono Sur ..298
12.1.6 El Caribe ..298
12.1.7 América Latina y El Caribe ..299
12.2 Conclusiones finales ...301
13. Propuesta general de OLADE para alcanzar los NDCs ...303
13.1 Propuesta sobre políticas de eficiencia energética ...303
13.2 Propuesta sobre políticas en energías renovables ...306
Referencias Bibliográficas ..310
Para Brasil ..310
Para México ..310
Para América Central ..310
Para la Subregión Andina ..311
Para el Cono sur ...311
Para El Caribe ..312
Referencias generales ...313
Anexos ...314
Anexo I. Descripción resumida del Modelo SAME ..315
Anexo II. Tabla resumen de los NDCs de los países de ALC316
Anexo III. Eficiencias relativas en el consumo final ..319
Anexo IV. Medidas de eficiencia energética y diversificación del consumo final
consideradas en el escenario ECN ...320
Anexo V. Factores de emisión de CO$_2$ e por fuente y actividad321
Anexo VI. Participación del sector energético en las emisiones totales de CO$_2$ e. 322
Indice de figuras

Figura 3.2. Estructura de la generación eléctrica de Brasil (2015) ... 35
Figura 3.3. Estructura de la oferta total de energía de Brasil (2015) ... 36
Figura 3.4. Estructura del consumo final de energía en México (2015) .. 37
Figura 3.5. Estructura de la generación eléctrica en México (2015) ... 37
Figura 3.9. Estructura de la oferta total de energía en América Central (2015) .. 40
Figura 3.10. Estructura del consumo final de energía en la Subregión Andina .. 41
Figura 3.11. Estructura de la generación eléctrica en la Subregión Andina (2015) 41
Figura 3.15. Estructura de La generación eléctrica del Cono Sur (2015) ... 44
Figura 3.18. Estructura de la oferta total de energía en El Caribe (2015) ... 46
Figura 3.19 Estructura del consumo final de energía en ALC (año 2015) ... 47
Figura 3.20 Estructura de la generación eléctrica de ALC (año 2015) .. 47
Figura 3.21 Estructura de la oferta total de energía de ALC (año 2015) ... 48
Figura 5.1. Proyección del consumo final de energía en Brasil, escenario BAU .. 57
Figura 5.2. Evolución de la matriz de consumo final de energía en Brasil, escenario BAU 57
Figura 5.3. Proyección del consumo final de electricidad en Brasil, escenario BAU .. 58
Figura 5.4. Proyección de la generación eléctrica en Brasil, escenario BAU .. 59
Figura 5.5. Evolución de la matriz de generación eléctrica en Brasil, escenario BAU 59
Figura 5.6. Proyección de la oferta total de energía en Brasil, escenario BAU ... 60
Figura 5.7. Evolución de la matriz de oferta total de energía en Brasil, escenario BAU 60
Figura 5.8. Proyección del consumo final de energía en México, escenario BAU ... 61
Figura 5.9. Evolución de la matriz de consumo final de energía en México, escenario BAU 62
Figura 5.10. Proyección del consumo final de electricidad en México, escenario BAU 62
Figura 5.11. Proyección de la generación eléctrica en México, escenario BAU .. 63
Figura 5.12. Evolución de la matriz de generación eléctrica en México, escenario BAU 64
Figura 5.13. Proyección de la oferta total de energía en México, escenario BAU ... 65
Figura 5.14. Evolución de la matriz de oferta total de energía en México, escenario BAU 65
Figura 5.15. Proyección del consumo final de energía en América Central, escenario BAU 66
Figura 5.16. Evolución de la matriz de consumo final de energía en América Central, escenario BAU 66
Figura 5.17. Proyección del consumo final de electricidad en América Central, escenario BAU 67
Figura 5.18. Proyección de la generación eléctrica en América Central, escenario BAU 68
Figura 5.19. Evolución de la matriz de generación eléctrica en América Central, escenario BAU 68
Figura 5.20. Proyección de la oferta total de energía en América Central, escenario BAU 69
Figura 5.21. Evolución de la matriz de oferta total de energía en América Central, escenario BAU 69
Figura 5.22. Proyección del consumo final de energía en la Subregión Andina, escenario BAU 70
Figura 5.24. Proyección del consumo final de electricidad en la Subregión Andina, escenario BAU 71
Figura 5.25. Proyección de la generación eléctrica en la Subregión Andina, escenario BAU 72
Figura 5.26. Evolución de la matriz de generación eléctrica en la Subregión Andina, escenario BAU. 72
Figura 5.27. Proyección de la oferta total de energía en la Subregión Andina, escenario BAU73
Figura 5.28. Evolución de la matriz de oferta total de energía en la Subregión Andina, escenario BAU73
Figura 5.29. Proyección del consumo final de energía en el Cono Sur, escenario BAU74
Figura 5.30. Evolución de la matriz de consumo final de energía en el Cono Sur, escenario BAU74
Figura 5.31. Proyección del consumo final de electricidad en el Cono Sur, escenario BAU75
Figura 5.32. Proyección de la generación eléctrica en el Cono Sur, escenario BAU76
Figura 5.33. Evolución de la matriz de generación eléctrica en el Cono Sur, escenario BAU76
Figura 5.34. Proyección de la oferta total de energía en el Cono Sur, escenario BAU77
Figura 5.35. Evolución de la matriz de oferta total de energía en El Cono Sur, escenario BAU77
Figura 5.36. Proyección del consumo final de energía en El Caribe, escenario BAU78
Figura 5.37. Evolución de la matriz de consumo final de energía en El Caribe, escenario BAU ...79
Figura 5.38. Proyección del consumo final de electricidad en El Caribe, escenario BAU79
Figura 5.39. Proyección de la generación eléctrica en El Caribe, escenario BAU80
Figura 5.40. Evolución de la matriz de generación eléctrica en el Cono Sur, escenario BAU81
Figura 5.41. Proyección de la oferta total de energía en El Caribe, escenario BAU82
Figura 5.42. Evolución de la matriz de oferta total de energía en El Caribe, escenario BAU82
Figura 5.43. Proyección del consumo final de energía en ALC, escenario BAU83
Figura 5.44. Evolución de la matriz de consumo final de energía en ALC, escenario BAU83
Figura 5.45. Proyección del consumo final de electricidad en ALC, escenario BAU84
Figura 5.46. Proyección de la generación eléctrica en ALC, escenario BAU85
Figura 5.47. Evolución de la matriz de generación eléctrica en ALC, escenario BAU85
Figura 5.48. Proyección de la oferta total de energía en ALC, escenario BAU86
Figura 5.49. Evolución de la matriz de oferta total de energía en ALC, escenario BAU86
Figura 6.1. Proyección del consumo final de energía en Brasil, escenario EPA90
Figura 6.2. Evolución de la matriz de consumo final de energía en Brasil, escenario EPA90
Figura 6.3. Proyección del consumo final de electricidad en Brasil, escenario EPA91
Figura 6.4. Cronograma de instalación/retiro de capacidad instalada en Brasil92
Figura 6.5. Proyección de la capacidad instalada en Brasil, escenario EPA93
Figura 6.6. Proyección de la generación eléctrica en Brasil, escenario EPA ...94
Figura 6.7. Evolución de la estructura de la matriz de generación eléctrica en Brasil, escenario EPA ...95
Figura 6.8. Proyección de la oferta total de energía en Brasil, escenario EPA96
Figura 6.9. Evolución de la matriz de oferta total de energía en Brasil, escenario EPA96
Figura 6.10. Proyección del consumo final de energía en México, Escenario EPA97
Figura 6.11. Evolución de la matriz de consumo final de energía de México, Escenario EPA97
Figura 6.13. Cronograma de instalación/retiro de capacidad instalada en México, Escenario EPA ...99
Figura 6.14. Proyección de la capacidad instalada en México, escenario EPA100
Figura 6.15. Proyección de la generación eléctrica en México, escenario EPA101
Figura 6.16. Evolución de la estructura de la matriz de generación eléctrica en México, escenario EPA101
Figura 6.17. Proyección de la oferta total de energía en México, escenario EPA102
Figura 6.18. Evolución de la matriz de oferta total de energía en México, escenario EPA103
Figura 6.19. Proyección del consumo final de energía en América Central, Escenario EPA104
Figura 6.20. Evolución de la matriz de consumo final de energía en América Central, Escenario EPA104
Figura 6.21. Proyección del consumo final de electricidad en América Central, Escenario EPA105
Figura 6.22. Cronograma de instalación/retiro de capacidad instalada en América Central108
Figura 6.23. Proyección de la capacidad instalada en América Central, escenario EPA109
Figura 6.24. Proyección de la generación eléctrica en América Central, escenario EPA111
Figura 6.25. Evolución de la matriz de generación eléctrica en América Central, escenario EPA111
Figura 6.26. Proyección de la oferta total de energía en América Central, escenario EPA

Figura 6.27. Evolución de la matriz de oferta total de energía en América Central, escenario EPA

Figura 6.28. Proyección del consumo final de energía en la Subregión Andina, Escenario EPA

Figura 6.29. Evolución de la matriz de consumo final de energía en la Subregión Andina, Escenario EPA

Figura 6.30. Proyección del consumo final de electricidad en la Subregión Andina, Escenario EPA

Figura 6.31. Cronograma de instalación/retiro de capacidad instalada en la Subregión Andina

Figura 6.32. Proyección de la capacidad instalada en la Subregión Andina, escenario EPA

Figura 6.33. Proyección de la generación eléctrica en la Subregión Andina, escenario EPA

Figura 6.34. Evolución de la matriz de generación eléctrica en la Subregión Andina, escenario EPA

Figura 6.35. Proyección de la oferta total de energía en la Subregión Andina, escenario EPA

Figura 6.36. Evolución de la matriz de consumo final de energía en la Subregión Andina, escenario EPA

Figura 6.37. Proyección del consumo final de energía en el Cono Sur, Escenario EPA

Figura 6.38. Evolución de la matriz de consumo final de energía en el Cono Sur, Escenario EPA

Figura 6.39. Proyección del consumo final de electricidad en el Cono Sur

Figura 6.40. Cronograma de instalación/retiro de capacidad instalada en el Cono Sur (Simulado)

Figura 6.41. Proyección de la capacidad instalada en el Cono Sur, escenario EPA

Figura 6.42. Proyección de la generación eléctrica en el Cono Sur, escenario EPA

Figura 6.43. Evolución de la matriz de generación eléctrica en el Cono Sur, escenario EPA

Figura 6.44. Proyección de la oferta total de energía en el Cono Sur, escenario EPA

Figura 6.45. Evolución de la matriz de oferta total de energía en el Cono Sur, escenario EPA

Figura 6.46. Proyección del consumo final de energía en El Caribe, Escenario EPA

Figura 6.47. Evolución de la matriz de consumo final de energía en El Caribe, Escenario EPA

Figura 6.48. Proyección del consumo final de electricidad en El Caribe

Figura 6.49. Cronograma de instalación/retiro de capacidad instalada en El Caribe

Figura 6.50. Proyección de la capacidad instalada en El Caribe, escenario EPA

Figura 6.51. Proyección de la generación eléctrica en El Caribe, escenario EPA

Figura 6.52. Evolución de la matriz de generación eléctrica en El Caribe, escenario EPA

Figura 6.53. Proyección de la oferta total de energía en El Caribe, escenario EPA

Figura 6.54. Evolución de la matriz de oferta total de energía en El Caribe, escenario EPA

Figura 6.55. Proyección del consumo final de energía en ALC, escenario EPA

Figura 6.56. Evolución de la matriz de consumo final de energía en ALC, escenario EPA

Figura 6.57. Proyección del consumo final de electricidad en ALC, escenario BAU

Figura 6.58. Cronograma de instalación/retiro de capacidad instalada en ALC, Escenario EPA

Figura 6.59. Proyección de la capacidad instalada en ALC, escenario EPA

Figura 6.60. Proyección de la generación eléctrica en ALC, escenario EPA

Figura 6.61. Evolución de la matriz de generación eléctrica en ALC, escenario EPA

Figura 6.62. Proyección de la oferta total de energía en ALC, escenario EPA

Figura 6.63. Evolución de la matriz de oferta total de energía en ALC, escenario EPA

Figura 7.1. Emisiones totales de CO2e de la matriz energética de Brasil

Figura 7.2. Porcentaje de reducción de emisiones de CO2e de la matriz energética de Brasil, respecto al escenario BAU

Figura 7.3. Emisiones totales de CO2e de la matriz energética de México

Figura 7.4. Porcentaje de reducción de emisiones de CO2e de la matriz energética de México, respecto al escenario BAU

Figura 7.5. Emisiones totales de CO2e de la matriz energética de América Central

Figura 7.6. Porcentaje de reducción de emisiones de CO2e de la matriz energética de América Central, respecto al escenario BAU
Figura 7.7. Emisiones totales de CO2e de la matriz energética de la Subregión Andina155
Figura 7.8. Porcentaje de reducción de emisiones de CO2e de la matriz energética de la Subregión Andina, respecto al escenario BAU ...155
Figura 7.9. Emisiones totales de CO2e de la matriz energética del Cono Sur156
Figura 7.10. Porcentaje de reducción de emisiones de CO2e de la matriz energética del Cono Sur, respecto al escenario BAU ...156
Figura 7.11. Emisiones totales de CO2e de la matriz energética de El Caribe157
Figura 7.12. Porcentaje de reducción de emisiones de CO2e de la matriz energética de El Caribe, respecto al escenario BAU ...157
Figura 7.13. Emisiones totales de CO2e de la matriz energética de ALC158
Figura 7.14. Porcentaje de reducción de emisiones de CO2e de la matriz energética de ALC, respecto al escenario BAU ..158
Figura 8.1. Proyección del consumo final de energía de Brasil, Escenario ECN162
Figura 8.2. Evolución de la matriz de consumo final de energía de Brasil, Escenario ECN163
Figura 8.3. Consumo total de electricidad de Brasil, Escenario ECN164
Figura 8.4. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de Brasil, Escenario ECN ...165
Figura 8.5. Capacidad instalada de generación eléctrica de Brasil, Escenario ECN166
Figura 8.6. Proyección de la generación eléctrica de Brasil, Escenario ECN167
Figura 8.7. Evolución de la matriz de generación eléctrica de Brasil, Escenario ECN167
Figura 8.8. Proyección de la oferta total de energía en Brasil, escenario ECN168
Figura 8.9. Evolución de la matriz de oferta total de energía en Brasil, escenario ECN168
Figura 8.10. Proyección del consumo final de energía en México, escenario ECN169
Figura 8.11. Evolución de la matriz de consumo final de energía en México, Escenario ECN170
Figura 8.12. Consumo total de electricidad de México, todos los escenarios170
Figura 8.13. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de México, Escenario ECN ...171
Figura 8.14. Capacidad instalada de generación eléctrica de México, Escenario ECN172
Figura 8.15. Proyección de la generación eléctrica de México, Escenario ECN173
Figura 8.16. Evolución de la matriz de generación eléctrica de México, Escenario ECN173
Figura 8.17. Proyección de la oferta total de energía en México, escenario ECN174
Figura 8.18. Evolución de la matriz de oferta total de energía en México, escenario ECN174
Figura 8.19. Proyección del consumo final de energía en América Central, Escenario ECN ..175
Figura 8.20. Evolución de la matriz de consumo final de energía en América Central, Escenario ECN 176
Figura 8.21. Consumo total de electricidad de México, todos los escenarios176
Figura 8.22. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de América Central, Escenario ECN ...177
Figura 8.23. Capacidad instalada de generación eléctrica de América Central, Escenario ECN178
Figura 8.24. Proyección de la generación eléctrica de América Central, Escenario ECN179
Figura 8.25. Evolución de la matriz de generación eléctrica de América Central, Escenario ECN179
Figura 8.26. Proyección de la oferta total de energía en América Central, escenario ECN180
Figura 8.27. Evolución de la matriz de oferta total de energía en América Central, Escenario ECN ...180
Figura 8.28. Proyección del consumo final de energía en la Subregión Andina, Escenario ECN181
Figura 8.29. Evolución de la matriz de consumo final de energía en la Subregión Andina, Escenario ECN 181
Figura 8.30. Consumo total de electricidad de la Subregión Andina, todos los escenarios182
Figura 8.31. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de la Subregión Andina, Escenario ECN ...183
Figura 8.32. Capacidad instalada de generación eléctrica de la Subregión Andina, Escenario ECN184
Figura 8.33. Proyección de la generación eléctrica la Subregión Andina, Escenario ECN184
Figura 8.34. Evolución de la matriz de generación eléctrica de la Subregión Andina, Escenario ECN 185
Figura 8.35. Proyección de la oferta total de energía en la Subregión Andina, Escenario ECN186
Figura 8.36. Evolución de la matriz de oferta total de energía en la Subregión Andina, escenario ECN 186
Figura 8.37. Proyección del consumo final de energía en el Cono Sur, Escenario ECN187
Figura 8.38. Evolución de la matriz de consumo final de energía en el Cono Sur, Escenario ECN187
Figura 8.39. Consumo total de electricidad en el Cono Sur, Escenario ECN ..188
Figura 8.40. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica del Cono Sur, Escenario ECN ...189
Figura 8.41. Capacidad instalada de generación eléctrica del Cono Sur, Escenario ECN190
Figura 8.42. Proyección de la generación eléctrica del Cono Sur, Escenario ECN191
Figura 8.43. Evolución de la matriz de generación eléctrica del Cono Sur, Escenario ECN191
Figura 8.44. Proyección de la oferta total de energía en el Cono Sur, Escenario ECN192
Figura 8.45. Evolución de la matriz de oferta total de energía en el Cono Sur, Escenario ECN192
Figura 8.46. Proyección del consumo final de energía en El Caribe, Escenario ECN193
Figura 8.47. Evolución de la matriz de consumo final de energía en El Caribe, Escenario ECN194
Figura 8.48. Consumo total de electricidad en El Caribe, Escenario ECN ..194
Figura 8.49. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de El Caribe, Escenario ECN ...195
Figura 8.50. Capacidad instalada de generación eléctrica de El Caribe, Escenario ECN196
Figura 8.51. Proyección de la generación eléctrica de El Caribe, Escenario ECN197
Figura 8.52. Evolución de la matriz de generación eléctrica de El Caribe, Escenario ECN197
Figura 8.53. Proyección de la oferta total de energía en El Caribe, Escenario ECN198
Figura 8.54. Evolución de la matriz de oferta total de energía en El Caribe, Escenario ECN198
Figura 8.55. Proyección del consumo final de energía en ALC, escenario ECN ..199
Figura 8.56. Evolución de la matriz de consumo final de energía en ALC, Escenario ECN199
Figura 8.57. Consumo total de electricidad de ALC, todos los escenarios ..200
Figura 8.58. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de ALC, Escenario ECN ...201
Figura 8.59. Capacidad instalada de generación eléctrica de ALC, Escenario ECN202
Figura 8.60. Proyección de la generación eléctrica de ALC, Escenario ECN ...203
Figura 8.61. Evolución de la matriz de generación eléctrica de ALC, Escenario ECN203
Figura 8.62. Proyección de la oferta total de energía en ALC, escenario ECN ..204
Figura 8.63. Evolución de la matriz de oferta total de energía en ALC, Escenario ECN204
Figura 9.1. Variación de las escorrentías al año 2050, correspondiente al escenario climático RCP8.5 206
Figura 9.2. Variación en el consumo de electricidad de Brasil, por efecto del CC209
Figura 9.3. Variación de la generación hidroeléctrica de Brasil, por efecto del CC209
Figura 9.4. Variación del consumo total de electricidad de México, por efecto del CC210
Figura 9.5. Variación de la generación hidroeléctrica de México, por efecto de CC210
Figura 9.7. Generación hidroeléctrica de América Central, Escenario ECC vs. Escenarios BAU y EPA 212
Figura 9.8. Variación del consumo total de electricidad de la Subregión Andina, por efecto del CC 212
Figura 9.9. Variación de la generación hidroeléctrica de la Subregión Andina, por efecto del CC213
Figura 9.10. Variación de la generación hidroeléctrica del Cono Sur, por efecto del CC214
Figura 9.11. Variación del consumo total de electricidad de El Caribe, por efecto del CC214
Figura 9.12. Variación de la generación hidroeléctrica de El Caribe, por efecto del CC215
Figura 9.13. Variación del consumo total de electricidad de ALC, por efecto del CC216
Figura 9.14 Variación de la generación hidroeléctrica de ALC, por efecto del CC217
Figura 10.1 Proyección del consumo final de energía de Brasil, todos los escenarios219
Figura 10.2 Estructura de la matriz de consumo final de energía de Brasil, todos los escenarios220
Figura 10.3 Proyección de la generación eléctrica de Brasil, todos los escenarios220
Figura 10.4 Índice de renovabilidad de la generación eléctrica de Brasil, todos los escenarios221
Figura 10.5 Proyección de la oferta total de energía de Brasil, todos los escenarios221
Figura 10.6 Índice de renovabilidad de la oferta total de energía de Brasil, todos los escenarios221
Figura 10.7 Emisiones de CO₂e de la generación eléctrica de Brasil, todos los escenarios223
Figura 10.8 Porcentajes de reducción de Emisiones de CO₂e de la generación eléctrica de Brasil223
Figura 10.9 Emisiones de CO₂e de la matriz energética de Brasil, todos los escenarios224
Figura 10.10 Porcentajes de reducción de Emisiones de CO₂e de la matriz energética de Brasil225
Figura 10.11 Proyección del consumo final de energía de México, todos los escenarios226
Figura 10.12 Estructura de la matriz de consumo final de energía de México, todos los escenarios .226
Figura 10.13 Proyección de la generación eléctrica de México, todos los escenarios227
Figura 10.14 Índice de renovabilidad de la generación eléctrica de México, todos los escenarios227
Figura 10.15 Proyección de la oferta total de energía de México, todos los escenarios228
Figura 10.16 Índice de renovabilidad de la oferta total de energía de México, todos los escenarios 229
Figura 10.17 Emisiones de CO₂e de la generación eléctrica de México, todos los escenarios230
Figura 10.18 Porcentajes de reducción de Emisiones de CO₂e de la generación eléctrica de México 230
Figura 10.19 Emisiones de CO₂e de la matriz energética de México, todos los escenarios231
Figura 10.20 Porcentajes de reducción de Emisiones de CO₂e de la matriz energética de México232
Figura 10.21 Proyección del consumo final de energía de América Central, todos los escenarios.......232
Figura 10.22 Estructura de la matriz de consumo final de energía de América Central, todos los escenarios ..233
Figura 10.23 Proyección de la generación eléctrica de América Central, todos los escenarios234
Figura 10.24 Índice de renovabilidad de la generación eléctrica de América Central, todos los escenarios 234
Figura 10.25 Proyección de la oferta total de energía de América Central, todos los escenarios235
Figura 10.26 Índice de renovabilidad de la oferta total de energía de América Central, todos los escenarios ..236
Figura 10.27 Emisiones de CO₂e de la generación eléctrica de América Central, todos los escenarios237
Figura 10.28 Porcentajes de reducción de Emisiones de CO₂e de la generación eléctrica de América Central ..237
Figura 10.29 Emisiones de CO₂e de la matriz energética de América Central, todos los escenarios ..238
Figura 10.30 Porcentajes de reducción de Emisiones de CO₂e de la matriz energética de América Central 239
Figura 10.31 Proyección del consumo final de energía de la Subregión Andina, todos los escenarios 239
Figura 10.32 Estructura de la matriz de consumo final de energía de la Subregión Andina, todos los escenarios ...240
Figura 10.33 Proyección de la generación eléctrica de la Subregión Andina, todos los escenarios ..240
Figura 10.34 Índice de renovabilidad de la generación eléctrica de la Subregión Andina, todos los escenarios ...240
Figura 10.35 Proyección de la oferta total de energía de la Subregión Andina, todos los escenarios 241
Figura 10.36 Índice de renovabilidad de la oferta total de energía de la Subregión Andina, todos los escenarios ..241
Figura 10.37 Emisiones de CO₂e de la generación eléctrica de la Subregión Andina, todos los escenarios 243
Figura 10.38 Porcentajes de reducción de Emisiones de CO₂e de la generación eléctrica de la Subregión Andina ..243
Figura 10.39 Emisiones de CO$_2$e de la matriz energética de la Subregión Andina, todos los escenarios
244
Figura 10.40 Porcentajes de reducción de Emisiones de CO$_2$e de la matriz energética de la Subregión
Andina ..245
Figura 10.41 Proyección del consumo final de energía del Cono Sur, todos los escenarios.................245
Figura 10.42 Estructura de la matriz de consumo final de energía del Cono Sur, todos los escenarios246
Figura 10.43 Proyección de la generación eléctrica del Cono Sur, todos los escenarios246
Figura 10.44 Índice de renovabilidad de la generación eléctrica del Cono Sur, todos los escenarios:247
Figura 10.45 Proyección de la oferta total de energía del Cono Sur, todos los escenarios.............247
Figura 10.46 Índice de renovabilidad de la oferta total de energía del Cono Sur, todos los escenarios248
Figura 10.47 Emisiones de CO$_2$e de la generación eléctrica del Cono Sur, todos los escenarios249
Figura 10.48 Porcentajes de reducción de Emisiones de CO$_2$e de la generación eléctrica del Cono Sur249
Figura 10.49 Emisiones de CO$_2$e de la matriz energética del Cono Sur, todos los escenarios250
Figura 10.50 Porcentajes de reducción de Emisiones de CO$_2$e de la matriz energética del Cono Sur250
Figura 10.51 Proyección del consumo final de energía de El Caribe, todos los escenarios...............251
Figura 10.52 Estructura de la matriz de consumo final de energía de El Caribe, todos los escenarios252
Figura 10.53 Proyección de la generación eléctrica de El Caribe, todos los escenarios252
Figura 10.54 Índice de renovabilidad de la generación eléctrica de El Caribe, todos los escenarios..253
Figura 10.55 Proyección de la oferta total de energía de El Caribe, todos los escenarios253
Figura 10.56 Índice de renovabilidad de la oferta total de energía de El Caribe, todos los escenarios254
Figura 10.57 Emisiones de CO$_2$e de la generación eléctrica de El Caribe, todos los escenarios......255
Figura 10.58 Porcentajes de reducción de Emisiones de CO$_2$e de la generación eléctrica de El Caribe255
Figura 10.59 Emisiones de CO$_2$e de la matriz energética de El Caribe, todos los escenarios256
Figura 10.60 Porcentajes de reducción de Emisiones de CO$_2$e de la matriz energética de El Caribe...256
Figura 10.61 Proyección del consumo final de energía de ALC, todos los escenarios......................257
Figura 10.62 Estructura de la matriz de consumo final de energía de ALC, todos los escenarios257
Figura 10.63 Proyección de la generación eléctrica de ALC, todos los escenarios258
Figura 10.64 Índice de renovabilidad de la generación eléctrica de ALC, todos los escenarios259
Figura 10.65 Proyección de la oferta total de energía de ALC, todos los escenarios259
Figura 10.66 Índice de renovabilidad de la oferta total de energía de ALC, todos los escenarios260
Figura 10.67 Emisiones de CO$_2$e de la generación eléctrica ALC, todos los escenarios261
Figura 10.68 Porcentajes de reducción de Emisiones de CO$_2$e de la generación eléctrica de ALC261
Figura 10.69 Emisiones de CO$_2$e de la matriz energética de ALC, todos los escenarios262
Figura 10.70 Porcentajes de reducción de Emisiones de CO$_2$e de la matriz energética de El Caribe ...263
Figura 11.1. Proyección de los LCOE para Brasil, según los escenarios de precios de los combustibles268
Figura 11.2. Proyección del costo total de generación eléctrica para Brasil, según los escenarios de
precios de los combustibles ...269
Figura 11.3. Costo total de inversión en generación eléctrica para Brasil, en el período de proyección270
Figura 11.4. Proyección del LCOE total para Brasil, según los escenarios de precios de los combustibles
271
Figura 11.5. Proyección de los LCOE para México, según los escenarios de precios de los combustibles273
Figura 11.6. Proyección del costo total de generación eléctrica para México, según los escenarios de
precios de los combustibles ...274
Figura 11.9. Proyección de los LCOE para América Central, según los escenarios de precios de los
combustibles ..277
Figura 11.10. Proyección del costo total de generación eléctrica para América Central, según los
escenarios de precios de los combustibles ..278
Figura 11.11. Costo total de inversión en generación eléctrica para América Central, en el período de proyección

Figura 11.12. Proyección del LCOE total para América Central, según los escenarios de precios de los combustibles

Figura 11.13. Proyección de los LCOE para la Subregión Andina, según los escenarios de precios de los combustibles

Figura 11.14. Proyección del costo total de generación eléctrica para la Subregión Andina, según los escenarios de precios de los combustibles

Figura 11.15. Costo total de inversión en generación eléctrica para la Subregión Andina, en el período de proyección

Figura 11.16. Proyección del LCOE total para la Subregión Andina, según los escenarios de precios de los combustibles

Figura 11.17. Proyección de los LCOE para el Cono Sur, según los escenarios de precios de los combustibles

Figura 11.18. Proyección del costo total de generación eléctrica para el Cono Sur, según los escenarios de precios de los combustibles

Figura 11.19. Costo total de inversión en generación eléctrica para el Cono Sur, en el período de proyección

Figura 11.20. Proyección del LCOE total para el Cono Sur, según los escenarios de precios de los combustibles

Figura 11.21. Proyección de los LCOE para El Caribe, según los escenarios de precios de los combustibles

Figura 11.22. Proyección del costo total de generación eléctrica para El Caribe, según los escenarios de precios de los combustibles

Figura 11.23. Costo total de inversión en generación eléctrica para El Caribe, en el período de proyección

Figura 11.24. Proyección del LCOE total para El Caribe, según los escenarios de precios de los combustibles

Figura 11.25. Proyección del costo total de generación eléctrica para ALC, según los escenarios de precios de los combustibles

Figura 11.26. Proyección del LCOE total para ALC, según los escenarios de precios de los combustibles

Figura 11.27. Costo total de inversión en generación eléctrica para ALC, en el período de proyección
Indice de tablas

Tabla 3.1. Indicadores económico-energéticos y ambientales de Brasil...34
Tabla 3.2. Indicadores económicos, energéticos y ambientales de México..36
Tabla 3.3. Indicadores económicos, energéticos y ambientales de la subregión de América Central... 38
Tabla 3.4. Indicadores económico-energéticos y ambientales de la Subregión Andina.................................40
Tabla 3.5. Indicadores económico-energéticos y ambientales de la Subregión del Cono Sur42
Tabla 3.6. Indicadores económico-energéticos y ambientales de la Subregión de El Caribe....................44
Tabla 3.7. Indicadores económicos, energéticos y ambientales de la región de ALC (año 2015)46
Tabla 4.1. Tipo de metas generales (no sólo sector energía) relacionadas con las NDCs de los países de ALC ...51
Tabla 4.2. Metas en ER y EE relacionadas con las NDCs de los países de ALC ..53
Tabla 5.1. Proyección del consumo final de energía en Brasil (Mbep) ..56
Tabla 5.2. Proyección del consumo final de electricidad en Brasil, escenario BAU (GWh)57
Tabla 5.3. Proyección de la generación eléctrica en Brasil, escenario BAU (GWh) ..58
Tabla 5.4. Proyección de la oferta total de energía en Brasil, escenario BAU (Mbep)60
Tabla 5.5. Proyección del consumo final de energía en México (Mbep) ...61
Tabla 5.6. Proyección del consumo final de electricidad en México, escenario BAU (GWh)62
Tabla 5.7. Proyección de la generación eléctrica en México, escenario BAU (GWh)63
Tabla 5.8. Proyección de la oferta total de energía en México, escenario BAU (Mbep)64
Tabla 5.9. Proyección del consumo final de energía en América Central, escenario BAU (Mbep)65
Tabla 5.10. Proyección del consumo final de electricidad en América Central, escenario BAU (GWh) .. 66
Tabla 5.11. Proyección de la generación eléctrica en América Central, escenario BAU (GWh)67
Tabla 5.12. Proyección de la oferta total de energía en América Central, escenario BAU (Mbep)68
Tabla 5.13. Proyección del consumo final de energía en la Subregión Andina, escenario BAU (Mbep) ..70
Tabla 5.14. Proyección del consumo final de electricidad en la Subregión Andina, escenario BAU (GWh)71
Tabla 5.15. Proyección de la generación eléctrica en la subregión Andina, escenario BAU (GWh)71
Tabla 5.16. Proyección de la oferta total de energía en la Subregión Andina, escenario BAU (Mbep)72
Tabla 5.17. Proyección del consumo final de energía en el Cono Sur, escenario BAU (Mbep)74
Tabla 5.18. Proyección del consumo final de electricidad en el Cono Sur, escenario BAU (GWh)75
Tabla 5.19. Proyección de la generación eléctrica en el Cono Sur, escenario BAU (GWh)75
Tabla 5.20. Proyección de la oferta total de energía en el Cono Sur, escenario BAU (Mbep)77
Tabla 5.21. Proyección del consumo final de energía en El Caribe, escenario BAU (Mbep)..................78
Tabla 5.22. Proyección del consumo final de electricidad en El Caribe, escenario BAU (GWh)79
Tabla 5.23. Proyección de la generación eléctrica en El Caribe, escenario BAU (GWh)80
Tabla 5.24. Proyección de la oferta total de energía en El Caribe, escenario BAU (Mbep)81
Tabla 5.25. Proyección del consumo final de energía en ALC, escenario BAU (Mbep)82
Tabla 5.26. Proyección del consumo final de electricidad en ALC, escenario BAU (GWh)83
Tabla 5.27. Proyección de la generación eléctrica en ALC, escenario BAU (GWh)84
Tabla 5.28. Proyección de la oferta total de energía en ALC, escenario BAU (Mbep)85
Tabla 6.1. Proyección del consumo final de energía en Brasil, escenario EPA (Mbep)90
Tabla 6.2. Proyección del consumo final de electricidad en Brasil, escenario EPA (GWh)91
Tabla 6.3. Cronogramas de instalación/retiro de capacidad instalada (MW) en Brasil, Escenario EPA .91
Tabla 6.4. Proyección de la capacidad instalada en Brasil, escenario EPA (MW) ..92
Tabla 6.5. Prioridad de despacho de las tecnologías de generación eléctrica en Brasil93
Tabla 6.6. Proyección de la generación de electricidad en Brasil, escenario EPA (GWh)94
Tabla 6.7. Proyección de la oferta total energía en Brasil, escenario EPA (Mbep)95
Tabla 6.8. Proyección del consumo final de energía en México (Mbep), Escenario EPA96
Tabla 6.9. Proyección del consumo final de electricidad de México (GWh) .. 98
Tabla 6.10. Cronogramas de instalación/retiro de capacidad instalada en México, Escenario EPA (MW) ... 98
Tabla 6.11. Proyección de la capacidad instalada en México, escenario EPA (MW) 99
Tabla 6.12. Prioridad de despacho considerada para México, escenario EPA ... 100
Tabla 6.13. Proyección de la generación de electricidad en México, escenario EPA (GWh) 100
Tabla 6.14. Proyección de la oferta total energía en México, escenario EPA (Mtep) 102
Tabla 6.15. Proyección del consumo final de energía en América Central, Escenario EPA (Mtep) 103
Tabla 6.16. Proyección del consumo final de electricidad por país (GWh) .. 104
Tabla 6.17. Cronogramas de instalación/retiro de capacidad instalada en América Central, Escenario EPA (MW) ... 105
Tabla 6.18. Proyección de la capacidad instalada en América Central, escenario EPA (MW) 109
Tabla 6.19. Prioridad de despacho de las tecnologías de generación eléctrica en América Central 110
Tabla 6.20. Proyección de la generación de electricidad en América Central, escenario EPA (GWh) 110
Tabla 6.21. Proyección de la oferta total energía en América Central, escenario EPA (Mtep) 112
Tabla 6.22. Proyección del consumo final de energía en la Subregión Andina, Escenario EPA (Mtep) 113
Tabla 6.23. Proyección del consumo final de electricidad por país (GWh) .. 114
Tabla 6.24. Cronogramas de instalación/retiro de capacidad instalada (MW) en la Subregión Andina 115
Tabla 6.25. Cronograma ajustado de instalación/retiro de capacidad instalada (MW) en la Subregión Andina .. 117
Tabla 6.26. Proyección de la capacidad instalada en la Subregión Andina, escenario EPA (MW) 118
Tabla 6.27. Prioridad de despacho considerada para la Subregión Andina, escenario EPA (GWh) 120
Tabla 6.28. Proyección de la generación de electricidad en la Subregión Andina, escenario EPA (GWh) 120
Tabla 6.29. Proyección de la oferta total energía en la Subregión Andina, escenario EPA (Mtep) 121
Tabla 6.30. Proyección del consumo final de energía en el Cono Sur (Mtep) .. 123
Tabla 6.31. Proyección del consumo final de electricidad por país (GWh) .. 124
Tabla 6.32. Cronogramas de instalación/retiro de capacidad instalada (MW) en el Cono Sur (Planes de expansión) .. 125
Tabla 6.33. Cronogramas de instalación/retiro de capacidad instalada (MW) en el Cono Sur (extendido) 127
Tabla 6.34. Proyección de la capacidad instalada en el Cono Sur, escenario EPA (MW) 127
Tabla 6.35. Prioridad de despacho en el Cono Sur ... 128
Tabla 6.36. Proyección de la generación de electricidad en el Cono Sur, escenario EPA (GWh) 129
Tabla 6.37. Proyección de la oferta total energía en el Cono Sur, escenario EPA (Mtep) 130
Tabla 6.38. Proyección del consumo final de energía en El Caribe, escenario EPA (Mtep) 132
Tabla 6.39. Proyección del consumo final de electricidad por país (GWh) .. 133
Tabla 6.40. Cronogramas de instalación/retiro de capacidad instalada (MW) en El Caribe 134
Tabla 6.41. Cronogramas de instalación/retiro de capacidad instalada de El Caribe ajustada (MW) 137
Tabla 6.42. Proyección de la capacidad instalada en El Caribe, escenario EPA (MW) 138
Tabla 6.43. Prioridad de despacho de las tecnologías de generación eléctrica en El Caribe 139
Tabla 6.44. Proyección de la generación de electricidad en El Caribe, escenario EPA (GWh) 139
Tabla 6.45. Proyección de la oferta total energía en El Caribe, escenario EPA (Mtep) 140
Tabla 6.46. Proyección del consumo final de energía en ALC, escenario EPA (Mtep) 141
Tabla 6.47. Proyección del consumo final de electricidad en ALC, escenario EPA (TWh) 143
Tabla 6.48. Cronograma de instalación/retiro de capacidad instalada en ALC, Escenario EPA (MW) ... 143
Tabla 6.49. Proyección de la capacidad instalada en ALC, escenario EPA (MW) 144
Tabla 6.50. Proyección de la generación de electricidad en ALC, escenario EPA (GWh) 145
Tabla 6.51. Proyección de la oferta total energía en ALC, escenario EPA (Mtep) 147
Tabla 7.1. Variación de las emisiones de GEIs hasta el año 2030, para Brasil .. 152
Tabla 8.1. Proyección del consumo final de energía en Brasil, escenario ECN (Mbep)162
Tabla 8.2. Proyección del consumo de electricidad de Brasil, Escenario ECN (GWh)163
Tabla 8.3. Cronogramas de instalación/retiro de capacidad instalada (MW) en Brasil, Escenario ECN164
Tabla 8.4. Proyección de la capacidad instalada en Brasil, escenario ECN (MW)......................................165
Tabla 8.5. Proyección de la generación de electricidad en Brasil, escenario ECN (GWh)..........................166
Tabla 8.6. Proyección de la oferta total energía en Brasil, escenario ECN (Mbep)....................................168
Tabla 8.7. Proyección del consumo final de energía en México, escenario ECN (Mbep)169
Tabla 8.8. Proyección del consumo de electricidad de México, Escenario ECN (GWh)170
Tabla 8.9. Cronogramas de instalación/retiro de capacidad instalada (MW) en México, Escenario ECN171
Tabla 8.10. Proyección de la capacidad instalada en México, Escenario ECN (MW)172
Tabla 8.11. Proyección de la generación de electricidad en México, escenario ECN (GWh)......................173
Tabla 8.12. Proyección de la oferta total energía en México, escenario ECN (Mbep)...............................173
Tabla 8.13. Proyección del consumo final de energía en América Central, escenario ECN (Mbep).............175
Tabla 8.14. Proyección del consumo de electricidad de América Central, Escenario ECN (GWh)..............176
Tabla 8.15. Cronogramas de instalación/retiro de capacidad instalada (MW) en América Central, Escenario ECN..177
Tabla 8.16. Proyección de la capacidad instalada en América Central, Escenario ECN (MW).....................177
Tabla 8.17. Proyección de la generación de electricidad en América Central, Escenario ECN (GWh)178
Tabla 8.18. Proyección de la oferta total energía en América Central, escenario ECN (Mbep)..................179
Tabla 8.19. Proyección del consumo final de energía en la Subregión Andina, escenario ECN (Mbep) 181
Tabla 8.20. Proyección del consumo de electricidad de la Subregión Andina, Escenario ECN (GWh)...182
Tabla 8.21. Cronogramas de instalación/retiro de capacidad instalada (MW) en la Subregión Andina, Escenario ECN..182
Tabla 8.22. Proyección de la capacidad instalada en la Subregión Andina, Escenario ECN (MW)183
Tabla 8.23. Proyección de la generación de electricidad en la Subregión Andina, escenario ECN (GWh)184
Tabla 8.24. Proyección de la oferta total energía en la Subregión Andina, Escenario ECN (Mbep)...........185
Tabla 8.25. Proyección del consumo final de energía en el Cono Sur, Escenario ECN (Mbep)..............186
Tabla 8.26. Proyección del consumo de electricidad en el Cono Sur, Escenario ECN (GWh).............187
Tabla 8.27. Cronogramas de instalación/retiro de capacidad instalada (MW) en el Cono Sur, Escenario ECN..188
Tabla 8.28. Proyección de la capacidad instalada en el Cono Sur, Escenario ECN (MW).........................189
Tabla 8.29. Proyección de la generación de electricidad en el Cono Sur, escenario ECN (GWh)..........190
Tabla 8.30. Proyección de la oferta total energía en el Cono Sur, escenario ECN (Mbep)......................191
Tabla 8.31. Proyección del consumo final de energía en El Caribe, Escenario ECN (Mbep)...............193
Tabla 8.32. Proyección del consumo de electricidad en El Caribe, Escenario ECN (GWh)...................194
Tabla 8.33. Cronogramas de instalación/retiro de capacidad instalada (MW) en El Caribe, Escenario ECN 195
Tabla 8.34. Proyección de la capacidad instalada en El Caribe, Escenario ECN (MW).........................195
Tabla 8.35. Proyección de la generación de electricidad en El Caribe, escenario ECN (GWh).........196
Tabla 8.36. Proyección de la oferta total energía en El Caribe, escenario ECN (Mbep)......................197
Tabla 8.37. Proyección del consumo final de energía en ALC, Escenario ECN (Mbep)......................199
Tabla 8.38. Proyección del consumo de electricidad de ALC, Escenario ECN (TWh).........................200
Tabla 8.39. Cronogramas de instalación/retiro de capacidad instalada (MW) en ALC, Escenario ECN 200
Tabla 8.40. Proyección de la capacidad instalada en ALC, Escenario ECN (Mbep).........................201
Tabla 8.41. Proyección de la generación de electricidad en ALC, Escenario ECN (GWh)....................202
Tabla 8.42. Proyección de la oferta total energía en ALC, escenario ECN (Mbep).........................203
Tabla 9.1. Porcentajes de variación considerados por efecto del cambio climático.............................207
Tabla 9.2. Variación en el consumo total de electricidad de Brasil, por efecto del CC, (GWh)...........208
Tabla 9.3. Variación en la generación hidroeléctrica de Brasil, por efecto del CC (GWh)209
Tabla 9.4. Variación del consumo total de electricidad de México, por efecto del CC (GWh)209
Tabla 9.5. Variación de la generación hidroeléctrica de México, por efecto del CC (GWh)210
Tabla 9.6. Variación del consumo total de electricidad de América Central, por efecto del CC (GWh) 211
Tabla 9.7. Variación de la generación hidroeléctrica de América Central, debido al CC (GWh)211
Tabla 9.8. Variación del consumo total de electricidad de la Subregión Andina, por efecto del CC (GWh) 212
Tabla 9.9. Variación de la generación hidroeléctrica de la Subregión Andina, por efecto del CC (GWh)213
Tabla 9.10. Variación de la generación hidroeléctrica del Cono Sur, por efecto del CC (GWh)213
Tabla 9.11. Variación del consumo total de electricidad de El Caribe, por efecto del CC (GWh)214
Tabla 9.12. Generación hidroeléctrica de El Caribe, Escenario ECC vs. Escenarios BAU y EPA (GWh)215
Tabla 9.13. Variación del consumo total de electricidad de ALC, por efecto del CC (GWh)215
Tabla 9.14. Variación de la generación hidroeléctrica de ALC, por efecto del CC (GWh)216
Tabla 10.1. Emisiones de CO2e de la generación eléctrica de Brasil, todos los escenarios (kt)222
Tabla 10.2. Emisiones de CO2e de la matriz energética de Brasil, todos los escenarios (kt)224
Tabla 10.3. Emisiones de CO2e de la generación eléctrica de México, todos los escenarios (kt)229
Tabla 10.4. Emisiones de CO2e de la matriz energética de México, todos los escenarios (kt)231
Tabla 10.5. Emisiones de CO2e de la generación eléctrica de América Central, todos los escenarios (kt)236
Tabla 10.6. Emisiones de CO2e de la matriz energética de América Central, todos los escenarios (kt)238
Tabla 10.7. Emisiones de CO2e de la generación eléctrica de la Subregión Andina, todos los escenarios (kt) ..242
Tabla 10.8. Emisiones de CO2e de la matriz energética de la Subregión Andina, todos los escenarios (kt) 244
Tabla 10.9. Emisiones de CO2e de la generación eléctrica del Cono Sur, todos los escenarios (kt)248
Tabla 10.10. Emisiones de CO2e de la matriz energética del Cono Sur, todos los escenarios (kt)249
Tabla 10.11. Emisiones de CO2e de la generación eléctrica de El Caribe, todos los escenarios (kt)254
Tabla 10.12. Emisiones de CO2e de la matriz energética de El Caribe, todos los escenarios (kt)255
Tabla 10.13. Emisiones de CO2e de la generación eléctrica de ALC, todos los escenarios (kt)260
Tabla 10.14. Emisiones de CO2e de la matriz energética de ALC, todos los escenarios (kt)262
Tabla 11.1. Proyección de costos variables de O&M, (US$/MWh) ...266
Tabla 11.2. Proyección de costos Fijos de O&M, (US$/kW) ...266
Tabla 11.3. Precios internacionales de los combustibles, escenario con crecimiento (US$/bep)266
Tabla 11.4. Precios internacionales de los combustibles, escenario sin crecimiento (US$/bep)266
Tabla 11.5. Vida útil de las tecnologías de generación eléctrica (años) ...267
Tabla 11.6. Proyección de los costos unitarios de inversión para Brasil, (US$/kW)267
Tabla 11.7. LCOE para Brasil, escenario de precios crecientes de los combustibles (US$/MWh)268
Tabla 11.8. LCOE para Brasil, escenario de precios constantes de los combustibles (US$/MWh)268
Tabla 11.9. Costo total de generación eléctrica para Brasil, escenario de precios crecientes de los combustibles (MUS$) ..269
Tabla 11.10. Costo total de generación eléctrica para Brasil, escenario de precios constantes de los combustibles (MUS$) ..269
Tabla 11.11. LCOE total para Brasil, escenario de precios crecientes de los combustibles (US$/MWh) 270
Tabla 11.12. LCOE total para Brasil, escenario de precios constantes de los combustibles (US$/MWh)270
Figura 11.4. Proyección del LCOE total para Brasil, según los escenarios de precios de los combustibles 271
Tabla 11.13. Proyección de los costos unitarios de inversión para México, (US$/kW)272
Tabla 11.14. LCOE para México, escenario de precios crecientes de los combustibles (US$/MWh)272
combustibles (MUS$)..289
Tabla 11.45. Costo total de generación eléctrica para El Caribe, escenario de precios constantes de los combustibles (MUS$)..289
Tabla 11.46. LCOE total para El Caribe, escenario de precios crecientes de los combustibles (US$/MWh) 291
Tabla 11.47. LCOE total para El Caribe, escenario de precios constantes de los combustibles (US$/MWh) 291
Tabla 11.48. Costo total de generación eléctrica para ALC, escenario de precios crecientes de los combustibles (MUS$)...291
Tabla 11.49. Costo total de generación eléctrica para ALC, escenario de precios constantes de los combustibles (MUS$)..292
Tabla 11.50. LCOE total para ALC, escenario de precios crecientes de los combustibles (US$/MWh) ...292
Tabla 11.51. LCOE total para ALC, escenario de precios constantes de los combustibles (US$/MWh) ...293
III. Abreviaturas y acrónimos

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC</td>
<td>América Latina y El Caribe</td>
</tr>
<tr>
<td>BAU</td>
<td>Business as usual</td>
</tr>
<tr>
<td>Bep</td>
<td>Barril equivalente de petróleo</td>
</tr>
<tr>
<td>CC</td>
<td>Cambio Climático</td>
</tr>
<tr>
<td>CEPAL</td>
<td>Comisión Económica de Naciones Unidas para América Latina y El Caribe</td>
</tr>
<tr>
<td>CO₂e</td>
<td>Dióxido de carbono equivalente</td>
</tr>
<tr>
<td>COP21</td>
<td>XXI Conferencia Internacional sobre Cambio Climático en París</td>
</tr>
<tr>
<td>EE</td>
<td>Eficiencia energética</td>
</tr>
<tr>
<td>ER</td>
<td>Energías renovables</td>
</tr>
<tr>
<td>ERNC</td>
<td>Energías renovables no convencionales</td>
</tr>
<tr>
<td>EUEI-PDF</td>
<td>EU Energy Initiative Partnership Dialogue Facility</td>
</tr>
<tr>
<td>GIZ</td>
<td>Corporación Alemana para la Cooperación Internacional</td>
</tr>
<tr>
<td>GEI</td>
<td>Gases de efecto invernadero</td>
</tr>
<tr>
<td>GWh</td>
<td>Gigavatiohora</td>
</tr>
<tr>
<td>hab.</td>
<td>Habitante</td>
</tr>
<tr>
<td>IPCC</td>
<td>Grupo intergubernamental de expertos en cambio climático</td>
</tr>
<tr>
<td>kbep</td>
<td>Miles de barriles equivalentes de Petróleo</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogramos</td>
</tr>
<tr>
<td>kW</td>
<td>Kilovatio</td>
</tr>
<tr>
<td>Mbep</td>
<td>Millones de barriles equivalentes de petróleo</td>
</tr>
<tr>
<td>Mt</td>
<td>Millones de toneladas métricas</td>
</tr>
<tr>
<td>MUSS</td>
<td>Millones de dólares de los Estados Unidos de América</td>
</tr>
<tr>
<td>MW</td>
<td>Megavatio</td>
</tr>
<tr>
<td>MWh</td>
<td>Megavatiohora</td>
</tr>
<tr>
<td>NDCs</td>
<td>Contribuciones nacionalmente determinadas para la reducción emisiones de GEI</td>
</tr>
<tr>
<td>OLADE</td>
<td>Organización Latinoamericana de Energía</td>
</tr>
<tr>
<td>PIB</td>
<td>Producto Interno Bruto</td>
</tr>
<tr>
<td>SAME</td>
<td>Modelo de Simulación y Análisis de la Matriz Energética</td>
</tr>
<tr>
<td>SE4ALL</td>
<td>Sustainable Energy for All</td>
</tr>
<tr>
<td>SiELAC</td>
<td>Sistema de Información Energética de América Latina y el Caribe</td>
</tr>
<tr>
<td>t</td>
<td>Tonelada métrica</td>
</tr>
<tr>
<td>TWh</td>
<td>Teravatioshora</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>Convención Marco de Naciones Unidas sobre Cambio Climático</td>
</tr>
<tr>
<td>US$</td>
<td>Dólares de los Estados Unidos de América</td>
</tr>
</tbody>
</table>
IV. PROLOGO

La gran mayoría de los países que han suscrito el Acuerdo de París, se enfrentan a los desafíos del cumplimiento de los compromisos que han sido asumidos para la mitigación del Cambio Climático a nivel global que se derivan del mencionado Acuerdo.

No resulta indiferente para Latino América y el Caribe, la vulnerabilidad de muchos de nuestros países, principalmente de las naciones con menores niveles de desarrollo, a los efectos del cambio climático y el profundo impacto que los eventos climáticos tienen en las economías domésticas. Esto le da particular trascendencia a la temática abordada en este documento.

Aun cuando la región presenta el mayor porcentaje a nivel global de fuentes renovables en la matriz de energía primaria y las contribuciones de Gases de Efecto Invernadero, actuales y acumuladas a lo largo de la historia, son sustancialmente menores comparativamente a otras regiones del planeta; el alcance de estos compromisos, y fundamentalmente las metas definidas en las Contribuciones Determinadas a Nivel Nacional (NDCs), involucran para Latino América y el Caribe una profunda y necesaria transición de su sector energía. Transición que también se sustenta en un histórico compromiso que Latino América y el Caribe ha demostrado a lo largo de todas las negociaciones internacionales en materia ambiental.

Es sabido que esta transición necesaria para lograr las metas asumidas, implica fundamentalmente la profundización en la incorporación de dos líneas de acción, por un lado, la mayor penetración de fuentes de energías renovables no convencionales para transitar a economías menos dependientes del carbono y, por el otro, en mejoras necesarias en la eficiencia energética de la mayoría de nuestras actividades económicas y, a su vez, actuando en los patrones de consumo de nuestra población cada vez más concentrada en centros urbanos.

Pero también debemos tener presente que las acciones para el cumplimiento en nuestra región, se encuentran muy condicionados por la naturaleza de nuestras principales actividades económicas que tienen un fuerte contenido extractivo y por el rezago histórico de nuestra población en la satisfacción de sus necesidades básicas. Es por eso que celebramos, por ejemplo, que en menos de 20 años más de 20 millones de latinoamericanos y caribeños tuvieron acceso a la electricidad, pero esto, aunque significa un importante logro en materia social, también implica un despertar de una gran parte de nuestra población a patrones de consumo asociados a economías de ingreso medio.

Son muchos de estos factores los que inciden en los escenarios y comportamientos futuros de los países de la región. Y las preguntas a responder son: ¿Se encuentra Latinoamérica y el Caribe en condiciones de dar cumplimiento a los compromisos asumidos considerando la evolución más probable de la demanda
y oferta de energía? ¿cuál sería esta evolución más probable y los distintos escenarios posibles?, ¿es el marco de políticas públicas existentes suficiente para dar cumplimiento a estos compromisos?

Para dar algunas luces sobre las potenciales respuestas a estas complejas interrogantes, podemos decir que LAC ha logrado de forma gradual importantes avances en el proceso de transición de sus sector energético, muchos países de la región poseen una muy alta participación de fuentes renovables en su matriz de generación de electricidad y la incorporación de energías renovables no convencionales, se ha logrado realizar fundamentalmente mediante mecanismos de mercado, es decir, bajo incorporaciones de generación costo eficientes para los sistemas interconectados, lo cual ha permitido dotar de eficiencia y gran dinamismo de la energía solar y eólica en muchos de los países de la región. Si se considera la dotación de recursos de la región, esto se constituye en un sendero propicio para el escalamiento a futuro de la capacidad instalada a nivel regional, de estas tecnologías de generación. Sin embargo, ¿es este avance y ritmo suficiente?

No debemos olvidar además que esta transformación evidente en muchos países de LAC, se ha sustentado también en el fortalecimiento de las capacidades de planificación sectorial y el desarrollo de marcos propicios para el desarrollo de negocios, asociados a las energías renovables no convencionales. Por otro lado, también es alto el porcentaje de países de la región que vienen trabajando de forma consistente en políticas de eficiencia energética, logrando transformaciones muy profundas en materia de la eficiencia de sus principales sectores productivos. Sin embargo, ¿son los marcos de políticas suficientes o se necesita profundizar estas acciones?

Es así que desde OLADE, con el propósito de dar respuesta a las importantes preguntas que se plantearan anteriormente, hemos retomado con este documento, el camino de aportar con estudios de prospectiva energética, parte de las respuestas necesarias para apoyar a los decisores a nivel político de nuestra región, en la compleja tarea de alinear los compromisos asumidos con el diseño de políticas públicas sectoriales, que permitan el cumplimiento de las metas fijadas. Estamos ampliamente complacidos en esta oportunidad de desarrollar este estudio prospectivo con el apoyo de EUEI PDF y entendemos que el resultado del documento aporta importantes recomendaciones para nuestra región, para dar cumplimiento a los compromisos derivados del Acuerdo de París. El resultado de este estudio realizado en coordinación y con el apoyo de nuestros países miembros es una clara evidencia del rol que OLADE debe cumplir para Latinoamérica y el Caribe.
El presente estudio, pretende analizar la eficacia de las políticas vigentes de desarrollo energético en los países de América latina y El Caribe (ALC), como contribución para alcanzar las metas planteadas en las NDCs, sobre reducción de emisiones de GEI al año 2030; y de ser necesario, proponer medidas mucho más ambiciosas de eficiencia energética y penetración de fuentes de energía renovables, que proporcionen mayor seguridad a nivel regional y subregional para el cumplimiento de las mencionadas metas. Para tal efecto, se realizó un ejercicio de prospectiva energética, con año base 2015 y horizonte al 2030, para la región de ALC, subdividida en 2 países y 4 subregiones: Brasil, México, América Central, Subregión Andina, Cono Sur y El Caribe.

Dada la disparidad en las referencias adoptadas por los países en el planteamiento de sus NDCs, para efecto de la prospectiva, se construyó en primer lugar un escenario tendencial tipo “business as usual (BAU)”, para que constituya la línea base en la contabilización de reducción de emisiones de GEI (Capítulo 5). Este escenario tiene como premisas principales el crecimiento tendencial del consumo de cada una de las fuentes de energía y la preservación de la estructura porcentual en la matriz de oferta, en las diferentes cadenas energéticas.

Mediante la agregación por subregiones de los planes de expansión del sector energético, con énfasis en el sector eléctrico, disponibles en cada uno de los países, se construyó el “Escenario de políticas actuales de desarrollo energético (EPA)”, considerando en las premisas las previsiones oficiales de evolución tanto en la demanda como en la oferta de energía (Capítulo 6). Al comparar la diferencia de los niveles de reducción de emisiones conseguidos en el año 2030 entre los escenarios EPA y BAU con las metas de reducción planteadas por los países en las NDCs, se pudo constatar que los porcentajes de reducción resultaban ser modestos en todas las subregiones y estaban sensiblemente por debajo de dichas metas (Capítulo 7). Esta constatación evidencia la necesidad de proponer un escenario alternativo con mayor profundidad en medidas de desarrollo energético sostenible. A este nuevo escenario se le denominó, “Escenario orientado al cumplimiento de las NDCs (ECN)”. Entre las premisas del escenario ECN, se consideró, mayor penetración de la electricidad en los usos finales afines, desplazando fuentes fósiles, incluido el transporte, mayor uso de biocombustibles en el transporte, sustitución de uso ineficiente de leña por tecnologías eficientes y por fuentes modernas, mejora tecnológica en el consumo de electricidad y combustibles; y una mayor penetración de fuentes de energía renovable en la matriz de generación eléctrica de cada subregión (Capítulo 8). Como consecuencia de dichas medidas, los porcentajes de reducción de emisiones de GEI, resultaron ser mucho más coherentes con las metas planteadas en las NDCs (Capítulo 10).

Para el escenario ECN propuesto, se realizó un análisis de sensibilidad frente a un eventual efecto prematuro del Cambio Climático sobre la demanda de electricidad y la generación hidroeléctrica, para las condiciones de un escenario climático crítico, planteado por el IPCC, el RCP8.5 (Capítulo 9). A partir de los resultados de este análisis se pudo comprobar que los efectos de CC, no afectarían significativamente la eficacia del escenario ECN para alcanzar el cumplimiento de las NDCs, lo cual sería una prueba de robustez de dicho escenario (Capítulo 10).

Finalmente se realizó un análisis de sensibilidad respecto al efecto de los costos internacionales de los combustibles sobre la competitividad de las ERNC, frente a las no renovables, para generación eléctrica, en términos de costos nivelados de energía (LCOE). Así se pudo comprobar que la energía eólica,
al finalizar el periodo de proyección, resulta ser muy competitiva, incluso para un escenario desfavorable de precios de los combustibles (precios constantes) (Capítulo 11).

Como conclusiones principales del estudio, se puede resumir que con las premisas del escenario de políticas actuales (EPA), representadas por sus últimos planes de expansión del sector energético, ninguna de las subregiones analizadas alcanzaría a cumplir con las metas de reducción de emisiones referenciadas con base en los NDCs de sus países, por lo tanto se justifica la propuesta de una política más agresiva en términos de eficiencia energética y penetración de energías renovables, como la simulada en el escenario ECN, con el cual a nivel regional de ALC se alcanzaría una reducción de emisiones de GEI del sector energético, cercana al 30%, que se podría considerar satisfactorio al compararla con las metas individuales de la mayoría de los países (Capítulo 12).

Las recomendaciones de OLADE con base en los resultados del estudio, se refieren principalmente a la necesidad de fortalecer las capacidades nacionales de sus Países Miembros, para promover, planificar e implementar medidas de eficiencia energética y de penetración de energías renovables de una manera más eficaz, lo cual requiere de la formulación de políticas que incentiven de mejor manera estas iniciativas, complementadas con el marco institucional y legal adecuado y los correspondientes mecanismos de financiamiento (Capítulo 13).
2. Introducción

Los países de la Región de América Latina y El Caribe, enfrentan los desafíos de los compromisos adquiridos internacionalmente sobre mitigación del Cambio Climático en el marco del Acuerdo de París. El alcance de estos compromisos, y en particular las metas definidas en las contribuciones determinadas a nivel nacional (NDCs, por sus siglas en inglés), tienen como factor común, en el área energética, el fomento al mayor uso de las fuentes renovables de energía y la promoción de la eficiencia energética.

Los planes estratégicos de desarrollo energético de los países de la Región, deben reflejar los compromisos asumidos, lo cual requiere de la elaboración de estudios de prospectiva que se ajusten a la nueva realidad e incorporen los últimos cambios en la coyuntura internacional de precios de los recursos energéticos convencionales y en el orden geopolítico del mercado energético global.

Por otra parte, numerosos estudios demuestran que la incidencia del Cambio Climático a largo plazo no solamente puede afectar a los recursos hídricos, sino también a la eficiencia de las centrales térmicas convencionales lo que, de no tomarse las precauciones adecuadas, podría causar un aumento en las emisiones de gases de efecto invernadero, provenientes del sector eléctrico, producto de un mayor uso de combustibles fósiles para la generación. Esta situación proporciona un aliciente extra para la promoción del uso de fuentes de energía renovable no convencionales.

En este sentido, OLADE, con el apoyo financiero de EUEI PDF, ha realizado el presente estudio de prospectiva de América Latina y El Caribe, desagregado por subregiones, a partir de escenarios de desarrollo energético sostenible, que incluyen mayor penetración de energías renovables no convencionales y programas de eficiencia energética.

El objetivo final del estudio, es realizar una primera evaluación, ajustada a lo que permite la información actualmente disponible, que impulse el debate sobre en qué medida las políticas y estrategias que en materia energética los países de la región están actualmente implementando, o tienen ya previstas para los próximos años, constituyen una contribución suficiente del sector para alcanzar las metas establecidas en las NDCs de cada país y así cumplir los compromisos adquiridos a nivel internacional en materia de reducción de emisiones.

Para efecto de este análisis, se procede con la construcción y simulación de escenarios de prospectiva para el período 2015-2030, con año base 2015, dividiéndose la región de América Latina y El Caribe en 4 subregiones y 2 países:

- México
- América Central (Belice, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, y Panamá)
- El Caribe (Barbados, Cuba, Granada, Guyana, Haití, Jamaica, República Dominicana, Surinam y Trinidad y Tobago)
- Subregión Andina (Bolivia, Colombia, Ecuador, Perú y Venezuela)
- Brasil
- Cono Sur (Argentina, Chile, Paraguay y Uruguay)
Para facilitar la redacción, en adelante tanto a las subregiones como a los países analizados individualmente, se les referirá como “subregiones”. La gran mayoría de los países de la región en sus NDCs, fijaron sus metas de reducción de emisiones al año 2030, con base en las que hipotéticamente tendrían respecto de un escenario tendencial. La realidad es que los países no han proporcionado información sobre las características que definen dicho escenario tendencial, por lo que resulta imposible su incorporación a este estudio. Por otra parte, visto que, salvo Ecuador, ningún otro país se plantea metas cuantitativas específicas al sector energético, con el fin de posibilitar una evaluación de la contribución del sector energético a los compromisos asumidos en materia de Cambio Climático por los países de ALC, es necesario asumir ciertas hipótesis de trabajo.

A los efectos de definir una línea de base para las emisiones del sector energético se construye un Escenario Tendencial (BAU), bajo las premisas de congelar la estructura de la matriz energética al 2015 y considerar una evolución tendencial de la demanda, a partir de las tasas registradas en el período 2005-2015, información extraída del SieLAC de OLADE.

Una segunda hipótesis de trabajo se vincula con la necesidad de plantear una correspondencia entre las metas globales y las sectoriales (particularmente las del subsector eléctrico). En tal sentido, se traslada al sector energético el mismo porcentaje de reducción de emisiones comprometido globalmente en las NDCs, quedando así definidas metas de referencia por subregión y para la región en conjunto.

Por su parte, el Escenario de Políticas Actuales (EPA) contempla las políticas vigentes en materia energética que han sido definidas por los países de la Región, las cuales están plasmadas en los últimos planes nacionales de expansión del sector energético (con principal atención en el subsector eléctrico). Se asume que en la elaboración de dichos planes se tuvieron en cuenta (si no totalmente al menos parcialmente) los compromisos contraídos en el Acuerdo de París.

Para el caso que las metas de reducción para el conjunto de la región no puedan ser alcanzadas bajo las hipótesis consideradas en la definición del escenario EPA, se elabora un escenario adicional denominado “Escenario Orientado al cumplimiento de las NDCs” (ECN), en el cual se plantean premisas más ambiciosas en cuanto a políticas de penetración de fuentes renovables no convencionales y programas de eficiencia energética.

Si bien los estudios que se han realizado en la región muestran que al 2030, los efectos del CC sobre el sector eléctrico, son prácticamente despreciables [21], se considera oportuno la realización de un análisis de sensibilidad considerando los efectos de incorporar el escenario más drástico de concentración de emisiones de GEI formulado por el IPCC, el RCP8.5., con las consiguientes consecuencias sobre la oferta, la demanda de energía, los costos de abastecimiento y las emisiones del sector. Dicha sensibilidad, se aplica para el escenario orientado al cumplimiento de las NDCs (ECN) y su respectiva línea base (BAU), generándose los escenarios ECN(RCP8.5) y BAU(RCP8.5). Este análisis de sensibilidad constituye una prueba de robustez del escenario propuesto (ECN).

Para el análisis de los costos nivelados de generación eléctrica (LCOE) y de costos totales de abastecimiento eléctrico, en cada uno de los escenarios anteriormente descritos, se consideró un escenario común de costos unitarios de las tecnologías y de precios internacionales de los combustibles, con una evolución creciente, de acuerdo a las previsiones de la “Energy Information Administration” de Estados Unidos en su “Energy Outlook 2017” [66], realizándose finalmente, un análisis de sensibilidad con precios internacionales de los combustibles estacionarios o constantes respecto a los valores del año base. Como herramienta informativa de prospectiva, se utilizó el Modelo de Simulación y Análisis de la Matriz Energética (SAME) desarrollado por OLADE, cuyas características se resumen en el Anexo I.

El SieLAC es el Sistema de Información Energética de América Latina y El Caribe, desarrollado y administrado por OLADE, que constituye una plataforma de consulta y una base de datos oficiales del sector energético de los Países Miembros de OLADE, que contiene series históricas desde 1970.
3. Diagnóstico regional en el año base
3. Diagnóstico regional en el año base

3.1 Brasil

Brasil es el país más grande y poblado de la región de ALC y también la economía más poderosa, además de ser el país con mayor diversidad en la disponibilidad y aprovechamiento de recursos energéticos. En la tabla 3.1, a continuación, se presentan algunos de sus indicadores económico-energéticos y ambientales.

<table>
<thead>
<tr>
<th>Tabla 3.1. Indicadores económico-energéticos y ambientales de Brasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador</td>
</tr>
<tr>
<td>Población total (millones de hab.)</td>
</tr>
<tr>
<td>PIB nominal (millones de USD de 2010)</td>
</tr>
<tr>
<td>PIB per cápita (USD/hab.)</td>
</tr>
<tr>
<td>Consumo final de energía (Mbep)</td>
</tr>
<tr>
<td>Consumo de energía per cápita (bep/hab.)</td>
</tr>
<tr>
<td>Intensidad energética (bep/1000 USD de 2010)</td>
</tr>
<tr>
<td>Consumo total de electricidad (GWh)</td>
</tr>
<tr>
<td>Consumo de electricidad per cápita (MWh/hab.)</td>
</tr>
<tr>
<td>Cobertura eléctrica (%)</td>
</tr>
<tr>
<td>Capacidad instalada total (MW)</td>
</tr>
<tr>
<td>Generación total de energía eléctrica (GWh)</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la generación eléctrica (t/GWh)</td>
</tr>
<tr>
<td>Renovabilidad de la generación eléctrica (%)</td>
</tr>
<tr>
<td>Oferta total de energía (Mbep)</td>
</tr>
<tr>
<td>Renovabilidad de la oferta total de energía (%)</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la oferta total de energía (t/bep)</td>
</tr>
<tr>
<td>Índice de autarquía energética (p.u.)</td>
</tr>
<tr>
<td>Intensidad de emisiones de la matriz energética (kg/USD de 2010)</td>
</tr>
</tbody>
</table>

Fuentes: SIELAC – OLADE, 2017 y CEPAL, 2017

En la matriz del consumo final de energía de Brasil, se destacan los derivados de petróleo y la biomasa, como se puede observar en la Figura 3.1. El alto consumo de biomasa se debe a la alta participación de la leña, los productos de caña de azúcar y los biocombustibles. En cuanto a la estructura por sectores los principales consumidores de energía son el sector transporte y el sector industrial, representando en conjunto más del 70% del total.
Como se observó en la tabla de indicadores de Brasil (Tabla 3.1), las fuentes de energía renovable participan con casi las tres cuartas partes de la generación eléctrica en el año base, siendo la hidroenergía el recurso más importante con una participación del 62% en generación y 65% en capacidad instalada, como se puede observar en la Figura 3.2. Respecto a las ERNC se distinguen la biomasa y la generación eólica.

En la matriz de oferta total de energía de Brasil, se destacan los hidrocarburos primarios y sus derivados, superando el 50% del total; y la biomasa que ocupa alrededor de la tercera parte de la matriz. Los productos de caña de azúcar, son los que generan la alta participación de la biomasa en la matriz de oferta total de energía de Brasil (ver Figura 3.3.). Pese a la importante participación de la hidroenergía en la generación eléctrica, esta fuente tiene una modesta participación de solamente el 11% a nivel de oferta total, mientras que otras fuentes renovables como la eólica, son prácticamente imperceptibles a dicho nivel.
3.2 México

México es el segundo país en población y en tamaño de la economía en la región de ALC. Algunos de sus indicadores económicos, energéticos y ambientales se pueden observar en la Tabla 3.2.

Tabla 3.2. Indicadores económicos, energéticos y ambientales de México

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población total (millones de hab.)</td>
<td>121.8</td>
</tr>
<tr>
<td>PIB nominal (millones de USD de 2010)</td>
<td>1,206,154</td>
</tr>
<tr>
<td>PIB per cápita (USD/hab.)</td>
<td>9,900</td>
</tr>
<tr>
<td>Consumo final de energía (Mbep)</td>
<td>910</td>
</tr>
<tr>
<td>Consumo de energía per cápita (bep/hab.)</td>
<td>7.47</td>
</tr>
<tr>
<td>Intensidad energética (bep/1000 USD de 2010)</td>
<td>0.75</td>
</tr>
<tr>
<td>Consumo total de electricidad (GWh)</td>
<td>248,895</td>
</tr>
<tr>
<td>Consumo de electricidad per cápita (MWh/hab.)</td>
<td>2.04</td>
</tr>
<tr>
<td>Cobertura eléctrica (%)</td>
<td>98.5</td>
</tr>
<tr>
<td>Capacidad instalada total (MW)</td>
<td>54,853</td>
</tr>
<tr>
<td>Generación total de energía eléctrica (GWh)</td>
<td>310,544</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la generación eléctrica (t/GWh)</td>
<td>245</td>
</tr>
<tr>
<td>Renovabilidad de la generación eléctrica (%)</td>
<td>18</td>
</tr>
<tr>
<td>Oferta total de energía (Mbep)</td>
<td>1,382</td>
</tr>
<tr>
<td>Renovabilidad de la oferta total de energía (%)</td>
<td>8</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la oferta total de energía (t/bep)</td>
<td>0.21</td>
</tr>
<tr>
<td>Índice de autarquía energética (p.u.)</td>
<td>1.06</td>
</tr>
<tr>
<td>Intensidad de emisiones de la matriz energética (kg/USD de 2010)</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Fuentes: SIELAC – OLADE, 2017 y CEPAL, 2017

Como se observa en la Figura 3.4, el consumo total de energía de México se concentra principalmente en los sectores transporte, industrial y residencial, representando en conjunto el 89% del total. Así mismo en la matriz por fuentes, predominan los hidrocarburos (petrolíferos y gas natural), con un 72% del total.
La matriz eléctrica de México es altamente gasificada, tanto en capacidad instalada como en generación. Como se observa en la Figura 3.5, el 41% en capacidad y el 54% en generación corresponden a centrales a gas natural. Las fuentes de energía renovable incluyendo la hidroenergía, participan con un 18% en generación. México es uno de los pocos países de la región de ALC, que aprovecha el recurso geotérmico para producción de electricidad.

En la matriz de oferta total de energía que se observa en la Figura 3.6, la participación del gas natural, prácticamente iguala a la del petróleo crudo y sus derivados. La participación de las fuentes de energía renovable se relega a un 8%, donde la hidroenergía aporta solamente con el 1% de la oferta total.
3.3 América Central

La subregión de América Central (Belice, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, y Panamá), para efectos del presente estudio de prospectiva, está compuesta por los 7 países del istmo centroamericano. En la Tabla 3.3 a continuación, se presentan algunos indicadores económicos, energéticos y ambientales de la subregión en conjunto.

Tabla 3.3. Indicadores económicos, energéticos y ambientales de la subregión de América Central

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población total (millones de hab.)</td>
<td>46.5</td>
</tr>
<tr>
<td>PIB nominal (millones de USD de 2010)</td>
<td>191,945</td>
</tr>
<tr>
<td>PIB per cápita (USD/hab.)</td>
<td>4,124</td>
</tr>
<tr>
<td>Consumo final de energía (Mtep)</td>
<td>205</td>
</tr>
<tr>
<td>Consumo de energía por cápita (bep/hab.)</td>
<td>4.4</td>
</tr>
<tr>
<td>Intensidad energética (bep/1000 USD de 2010)</td>
<td>1.1</td>
</tr>
<tr>
<td>Consumo total de electricidad (GWh)</td>
<td>44,082</td>
</tr>
<tr>
<td>Consumo de electricidad por cápita (MWh/hab.)</td>
<td>0.95</td>
</tr>
<tr>
<td>Cobertura eléctrica (%)</td>
<td>89</td>
</tr>
<tr>
<td>Capacidad instalada total (MW)</td>
<td>12,894</td>
</tr>
<tr>
<td>Generación total de energía eléctrica (GWh)</td>
<td>51,824</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la generación eléctrica (t/GWh)</td>
<td>194</td>
</tr>
<tr>
<td>Renovabilidad de la generación eléctrica (%)</td>
<td>68</td>
</tr>
<tr>
<td>Oferta total de energía (Mtep)</td>
<td>243</td>
</tr>
<tr>
<td>Renovabilidad de la oferta total de energía (%)</td>
<td>46</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la oferta total de energía (t/bep)</td>
<td>0.14</td>
</tr>
<tr>
<td>Índice de autarquía energética (p.u.)</td>
<td>0.5</td>
</tr>
<tr>
<td>Intensidad de emisiones de la matriz energética (kg/USD de 2010)</td>
<td>0.18</td>
</tr>
</tbody>
</table>

En la estructura del consumo final de energía de la subregión de América Central, predominan el sector residencial y el transporte, con una participación acumulada del 75%, como se puede observar en la Figura 3.7. En la matriz del consumo por fuentes, se desataca la alta participación de la biomasa con un 38%, debido principalmente al elevado consumo de leña y carbón vegetal en países como Guatemala, Honduras y Nicaragua.
La hidroelectricidad es el componente preponderante en la generación eléctrica de la subregión de América Central, como se observa en la Figura 3.8, acercándose en el caso de la energía generada a una participación del 50%. Otras fuentes de energía renovable, como la geotermia, la eólica, la biomasa y la solar, complementan el 68% de renovabilidad que ostenta la matriz de generación eléctrica en esta subregión.

Como se observa en la Figura 3.9, de manera muy similar a la matriz del consumo final, la oferta total de energía está compuesta en mayor proporción por el petróleo crudo y sus derivados; y por la biomasa. El alto índice de renovabilidad de la matriz de oferta total de energía en la subregión de América Central del 46%, se debe fundamentalmente a la participación de la biomasa. En la matriz energética de América Central se destaca la ausencia del gas natural.
3.4 Subregión Andina

Los países que integran la Subregión Andina (Bolivia, Colombia, Ecuador, Perú y Venezuela), se caracterizan por ser en su mayoría importantes productores y exportadores de fuentes primarios como petróleo crudo, gas natural y carbón mineral, además de poseer importantes recursos hidroenergéticos. Como subregión ocupan el segundo puesto en población después de Brasil y el tercero en tamaño de la economía después de Brasil y México. En la tabla 3.4, se puede observar algunos indicadores económicos, energéticos y ambientales de esta subregión.

Tabla 3.4. Indicadores económico-energéticos y ambientales de la Subregión Andina

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población total (millones de hab.)</td>
<td>137.6</td>
</tr>
<tr>
<td>PIB nominal (millones de USD de 2010)</td>
<td>899,639</td>
</tr>
<tr>
<td>PIB per cápita (USD/hab.)</td>
<td>6,536</td>
</tr>
<tr>
<td>Consumo final de energía (Mtep)</td>
<td>803</td>
</tr>
<tr>
<td>Consumo de energía per cápita (bep/hab.)</td>
<td>5.8</td>
</tr>
<tr>
<td>Intensidad energética (bep/1000 USD de 2010)</td>
<td>0.9</td>
</tr>
<tr>
<td>Consumo total de electricidad (GWh)</td>
<td>215,091</td>
</tr>
<tr>
<td>Consumo de electricidad per cápita (MWh/hab.)</td>
<td>1.6</td>
</tr>
<tr>
<td>Cobertura eléctrica (%)</td>
<td>96</td>
</tr>
<tr>
<td>Capacidad instalada total (MW)</td>
<td>54,738</td>
</tr>
<tr>
<td>Generación total de energía eléctrica (GWh)</td>
<td>282,203</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la generación eléctrica (t/GWh)</td>
<td>162</td>
</tr>
<tr>
<td>Renovabilidad de la generación eléctrica (%)</td>
<td>56</td>
</tr>
<tr>
<td>Oferta total de energía (Mtep)</td>
<td>1,339</td>
</tr>
<tr>
<td>Renovabilidad de la oferta total de energía (%)</td>
<td>14</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la oferta total de energía (t/bep)</td>
<td>0.18</td>
</tr>
<tr>
<td>Índice de autarquía energética (p.u.)</td>
<td>2.7</td>
</tr>
<tr>
<td>Intensidad de emisiones de la matriz energética (kg/USD de 2010)</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Los sectores de consumo preponderantes en la Subregión Andina son el Transporte y la Industria, mientras que en la matriz de consumo por fuentes predominan los productos de petróleo y el gas natural representando en conjunto cerca de las tres cuartas partes del total, como se puede observar en la Figura 3.10.
En la Figura 3.11, se puede observar la alta importancia que tiene en la Subregión Andina la hidroelectricidad, al representar tanto en capacidad instalada como en generación, más del 50% de la matriz de producción eléctrica. También se destaca como segundo recurso en importancia en este segmento del sector energético, el gas natural.

Debido a los altos niveles de producción de hidrocarburos primarios (petróleo crudo y gas natural), estas fuentes representan en conjunto más del 80% de la matriz de oferta total de energía, como se indica en la Figura 3.12. Cabe resaltar que en la subregión se encuentra el mayor productor de petróleo crudo en la región de ALC, Venezuela.

Fuente: OLADE - SIELAC, 2017

3.5 Cono Sur

Las características de la Subregión del Cono Sur (Argentina, Chile, Paraguay y Uruguay), estarán determinadas principalmente por el mayor peso que tienen Argentina y Chile en esta subregión, en cuanto a PIB, población y sobre todo producción energética. En la Tabla No. 3.5, se presentan algunos indicadores económicos, energéticos y ambientales del Cono Sur.

Tabla 3.5. Indicadores económico-energéticos y ambientales de la Subregión del Cono Sur

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población total (millones de hab.)</td>
<td>71.6</td>
</tr>
<tr>
<td>PIB nominal (millones de USD de 2010)</td>
<td>795,357</td>
</tr>
<tr>
<td>PIB per cápita (USD/hab.)</td>
<td>11,114</td>
</tr>
<tr>
<td>Consumo final de energía (Mbep)</td>
<td>717</td>
</tr>
<tr>
<td>Consumo de energía per cápita (bep/hab.)</td>
<td>10</td>
</tr>
<tr>
<td>Intensidad energética (bep/1000 USD de 2010)</td>
<td>0.90</td>
</tr>
<tr>
<td>Consumo total de electricidad (GWh)</td>
<td>219,915</td>
</tr>
<tr>
<td>Consumo de electricidad per cápita (MWh/hab.)</td>
<td>3.1</td>
</tr>
<tr>
<td>Cobertura eléctrica (%)</td>
<td>99</td>
</tr>
<tr>
<td>Capacidad instalada total (MW)</td>
<td>67,104</td>
</tr>
<tr>
<td>Generación total de energía eléctrica (GWh)</td>
<td>284,493</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la generación eléctrica (b/GWh)</td>
<td>190</td>
</tr>
<tr>
<td>Renovabilidad de la generación eléctrica (%)</td>
<td>46</td>
</tr>
<tr>
<td>Oferta total de energía (Mbep)</td>
<td>1,052</td>
</tr>
<tr>
<td>Renovabilidad de la oferta total de energía (%)</td>
<td>20</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la oferta total de energía (b/Mbep)</td>
<td>0.17</td>
</tr>
<tr>
<td>Índice de autarquía energética (p.u.)</td>
<td>0.7</td>
</tr>
<tr>
<td>Intensidad de emisiones de la matriz energética (kg/USD de 2010)</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Fuentes: SIELAC – OLADE, 2017 y CEPAL, 2017

Como se observa en la Figura 3.13, los sectores de mayor participación en el consumo final de energía en el Cono Sur son el transporte, el industrial y el residencial, empatando estos dos últimos con un 24% cada uno. En la estructura por fuentes, predominan los derivados de petróleo y el gas natural acumulando el 66% de participación. En esta subregión también tiene relevancia el consumo de biomasa, debido principalmente a la influencia de Chile y Paraguay.
La matriz de generación eléctrica en el Cono Sur, está caracterizada por la alta participación de la hidroenergía y el gas natural. Estos dos recursos, cubren alrededor del 70% de la matriz, tanto en capacidad instalada como en generación. Las fuentes de energía renovable no convencionales (biomasa, eólica y solar), participan en conjunto con un 5%, donde se destacan las centrales solares de Chile y las eólicas de Argentina y Uruguay (ver Figura 3.14).

La oferta total de energía en el Cono Sur, está compuesta fundamentalmente por petróleo y derivados y el gas natural. La alta participación del gas natural se debe principalmente a la influencia de Argentina y en una menor proporción a Chile. La oferta renovable está compuesta por la hidroenergía la biomasa y otras renovables como eólica y solar, donde se destacan Chile por su generación fotovoltaica y Uruguay por su generación eólica (ver Figura 3.15).
3.6 El Caribe

Tabla 3.6. Indicadores económico-energéticos y ambientales de la Subregión de El Caribe

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población total (millones de hab.)</td>
<td>38.4</td>
</tr>
<tr>
<td>PIB nominal (millones de USD de 2010)</td>
<td>199,299</td>
</tr>
<tr>
<td>PIB per cápita (USD/hab.)</td>
<td>5,187</td>
</tr>
<tr>
<td>Consumo final de energía (Mbep)</td>
<td>266</td>
</tr>
<tr>
<td>Consumo de energía per cápita (bep/hab.)</td>
<td>6.9</td>
</tr>
<tr>
<td>Intensidad energética (bep/1000 USD de 2010)</td>
<td>1.3</td>
</tr>
<tr>
<td>Consumo total de electricidad (GWh)</td>
<td>45,722</td>
</tr>
<tr>
<td>Consumo de electricidad per cápita (MWh/hab.)</td>
<td>1.2</td>
</tr>
<tr>
<td>Cobertura eléctrica (%)</td>
<td>79</td>
</tr>
<tr>
<td>Capacidad instalada total (MW)</td>
<td>14,170</td>
</tr>
<tr>
<td>Generación total de energía eléctrica (GWh)</td>
<td>54,769</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la generación eléctrica (g/kWh)</td>
<td>331</td>
</tr>
<tr>
<td>Renovabilidad de la generación eléctrica (%)</td>
<td>8</td>
</tr>
<tr>
<td>Oferta total de energía (Mbep)</td>
<td>347</td>
</tr>
<tr>
<td>Renovabilidad de la oferta total de energía (%)</td>
<td>14</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la oferta total de energía (g/kbep)</td>
<td>0.19</td>
</tr>
<tr>
<td>Índice de autarquía energética (p.u.)</td>
<td>1.0</td>
</tr>
<tr>
<td>Intensidad de emisiones de la matriz energética (kg/USD de 2010)</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Fuentes: SIELAC – OLADE, 2017 y CEPAL, 2017

La Subregión de El Caribe (Barbados, Cuba, Granada, Guyana, Haití, Jamaica, República Dominicana, Surinam y Trinidad y Tobago), la conforman en su mayoría países netamente importadores de energía, sin embargo, gracias a la participación de Trinidad y Tobago, con su importante producción y exportación de gas natural, la subregión en conjunto, alcanza su autonomía energética. A continuación, en la Tabla 3.6, se presentan algunos indicadores económicos energéticos y ambientales de El Caribe.

Como se observa en la Figura 3.16, la subregión de El Caribe, en la matriz de consumo final energético, se destacan los sectores: industrial, transporte y residencial, siendo los productos petrolíferos, el gas natural y la biomasa, las tres fuentes de mayor demanda. La alta participación del gas natural, se debe principalmente a la influencia de Trinidad y Tobago, mientras que la de biomasa a Haití, donde predomina el consumo de leña en el sector residencial; y Cuba donde tiene alta importancia el consumo de bagazo de caña en el sector industrial.
El sistema de generación eléctrica de la subregión de El Caribe es fundamentalmente térmico, donde los hidrocarburos, ocupan más del 90% de la matriz tanto en capacidad instalada como en generación de energía, como se puede apreciar en la Figura 3.17. En esta subregión las fuentes de energía renovables, ocupan una posición muy minoritaria.

En concordancia con la matriz de consumo final de energía y la matriz de generación eléctrica, la oferta total de energía en la subregión de El Caribe está compuesta en su mayor parte por hidrocarburos, los cuales ocupan en conjunto más del 80% del total. En cuanto a las fuentes de energía renovable, solamente se destaca la biomasa (14%), ya que la participación de la hidroenergía y otras renovables es prácticamente imperceptible a nivel de oferta total de energía (ver Figura 3.18).
3.7 América Latina y El Caribe (ALC)

La región de América Latina y El Caribe, se considera para efecto del estudio, constituida por los 27 Países Miembros de OLADE, que abarcan los 12 países de América del Sur, 7 países de América Central, México en Norte América, 4 países de las Antillas Mayores y 3 de las Antillas Menores. En la Tabla 3.7, se presentan algunos indicadores económicos, energéticos y ambientales de esta Región en el año base (2015).

Tabla 3.7. Indicadores económicos, energéticos y ambientales de la región de ALC (año 2015)

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población total (millones de hab.)</td>
<td>621.3</td>
</tr>
<tr>
<td>PIB nominal (millones de USD de 2010)</td>
<td>5,610,529</td>
</tr>
<tr>
<td>PIB per cápita (USD/hab.)</td>
<td>9,030</td>
</tr>
<tr>
<td>Consumo final de energía (Mbep)</td>
<td>4,576</td>
</tr>
<tr>
<td>Consumo de energía per cápita (bep/hab.)</td>
<td>7.4</td>
</tr>
<tr>
<td>Intensidad energética (bep/1000 USD de 2010)</td>
<td>0.82</td>
</tr>
<tr>
<td>Consumo total de electricidad (GWh)</td>
<td>1,264,966</td>
</tr>
<tr>
<td>Consumo de electricidad per cápita (MWh/hab.)</td>
<td>2.0</td>
</tr>
<tr>
<td>Cobertura eléctrica (%)</td>
<td>96</td>
</tr>
<tr>
<td>Capacidad instalada total (MW)</td>
<td>337,051</td>
</tr>
<tr>
<td>Generación total de energía eléctrica (GWh)</td>
<td>1,565,694</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la generación eléctrica (t/GWh)</td>
<td>158</td>
</tr>
<tr>
<td>Renovabilidad de la generación eléctrica (%)</td>
<td>52</td>
</tr>
<tr>
<td>Oferta total de energía (Mbep)</td>
<td>6,532</td>
</tr>
<tr>
<td>Renovabilidad de la oferta total de energía (%)</td>
<td>24</td>
</tr>
<tr>
<td>Factor de emisión de CO2e de la oferta total de energía (t/bep)</td>
<td>0.17</td>
</tr>
<tr>
<td>Índice de autarquía energética (p.u.)</td>
<td>1</td>
</tr>
<tr>
<td>Intensidad de emisiones de la matriz energética (kg/USD de 2010)</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Fuentes: SIELAC – OLADE, 2017 y CEPAL, 2017
Del consumo final total de energía en ALC, cerca del 50% corresponde a derivados del petróleo, como se puede observar en la Figura No. 3.19. Se destaca el alto consumo de biomasa (principalmente leña y bagazo de caña), cuya participación se equipara a la de la electricidad, con un 17%. La fracción restante la cubren el gas natural y el carbón mineral.

Figura 3.19 Estructura del consumo final de energía en ALC (año 2015)

En el año 2015 la región de ALC generó un total de 1.566 TWh de electricidad, con una matriz de generación eléctrica 53% renovable, como se puede apreciar en la Figura No. 3.20. Aquí se destaca la alta participación de la hidroenergía que constituye el principal recurso energético para la generación eléctrica en la región.

Fuente: OLADE - SIELAC, 2017
En cuanto a la oferta total de energía, al igual que el consumo final, la matriz está dominada por la participación de los hidrocarburos (petróleo crudo, gas natural y derivados), que en conjunto representan alrededor del 70%. Las fuentes de energía renovable, participan con un 24%, de las cuales la mayor fracción ocupa la biomasa, debido principalmente al alto consumo de leña y bagazo de caña de azúcar. Las ERNC tienen todavía en el año base a nivel regional una participación muy marginal de solamente el 1%, como se observa en la Figura 3.21.
4. El sector energía y las NDCs de la región América Latina y el Caribe
4. El sector energía y las NDCs de la región América Latina y el Caribe

Todos los países de la región participan del Acuerdo de París, y entre ellos, la mayoría ya lo han ratificado (sólo Trinidad y Tobago, y Surinam aun no lo han hecho). En relación a las NDCs asumidas por los países de la región, se observa que en términos generales dichos compromisos se expresan bajo diversas modalidades (Ver tabla resumen en el Anexo II).

4.1 Consideraciones generales

En términos generales, considerando el resto de sectores además del energético, algunos países se plantean al 2030, lograr un determinado porcentaje de reducción de las emisiones de GEI respecto de las proyectadas para ese año en un escenario BAU. Tal es el caso de Argentina, Barbados, Colombia, Ecuador, Guatemala, Haití, Honduras, Jamaica, México, Paraguay, Perú, Trinidad y Tobago y Venezuela. Por su parte Brasil, Granada y República Dominicana asumieron el compromiso de alcanzar al 2030, una determinada meta de reducción de sus emisiones de GEI respecto de las de un año de referencia (2005, 2010 y 2010, respectivamente). El caso de Costa Rica es un híbrido de los anteriores, ya que al 2030 se plantea alcanzar un determinado porcentaje de reducción en sus emisiones de GEI respecto de un escenario BAU, a la vez que asume el compromiso de reducir en un 25% dichas emisiones en comparación con las emisiones del 2012 (lo que implica alcanzar un máximo absoluto de emisiones de 9,374,000 t CO2e netas al 2030). En tanto que Chile se propone al 2030 una meta de reducción de sus emisiones de GEI por unidad de PIB, en relación a los niveles del 2007. Uruguay por su parte proyecta una disminución de la intensidad energética del 25% al 2030, en relación a los valores de 1990. Finalmente cabe señalar que países como Bolivia, Cuba, El Salvador, Guyana, Panamá, Surinam, presentan políticas y acciones a realizar, que en la gran mayoría de los casos están previstas dentro de los planes de desarrollo nacionales y/o sectoriales, pero no definen metas de mitigación de GEI en términos cuantitativos.

Muchos países han expresado su voluntad en forma condicionada, de alcanzar objetivos más ambiciosos, sujetos a la obtención de apoyo internacional. La siguiente tabla ilustra los países que en sus NDCs han asumido metas condicionadas y no condicionadas, y si el carácter de las mismas es cuantificable o meramente descriptivo.
Tabla 4.1. Tipo de metas generales (no sólo sector energía) relacionadas con las NDCs de los países de ALC

<table>
<thead>
<tr>
<th>País</th>
<th>Metas generales</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Condicionales</td>
<td>Incondicionales</td>
</tr>
<tr>
<td>Argentina</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Barbados</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Belice</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Brasil</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Chile</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Colombia</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Costa Rica</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cuba</td>
<td></td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Ecuador</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>El Salvador</td>
<td></td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Granada</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Guatemala</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Guyana</td>
<td></td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Haití</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Honduras</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Jamaica</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>México</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Panamá</td>
<td></td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Paraguay</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Perú</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Rep. Dominicana</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Surinam</td>
<td></td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Trinidad y Tobago</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Uruguay</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Venezuela</td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

○ Meta cuantificable
● Meta descriptiva
En lo referente al aporte del sector energía a la consecución de las metas fijadas en las NDCs, prácticamente ningún país de la región plantea dicha contribución en términos cuantitativos. La excepción la constituye Ecuador, que postula una reducción de entre un 20 y 25% de las emisiones de GEI del sector energético en relación al escenario BAU. También Granada presenta una situación diferente, en la medida que plantea una reducción del 30% de las emisiones previstas al 2025, de las cuales estima que el 10% provendrá de la incorporación de fuentes renovables, en tanto que el 20% restante de medidas de eficiencia energética. Se destacan en cambio los compromisos explícitos por parte de un grupo importante de países, de dar impulso a actividades de eficiencia energética y de promoción de las energías renovables, con el fin de coadyuvar al cumplimiento de las metas establecidas en el marco del Acuerdo de París.

Es así que Argentina, Barbados, Belice, Costa Rica, Cuba, Ecuador, El Salvador, Granada, Guatemala, Guyana, Honduras, Panamá, Surinam, Uruguay y Venezuela, incorporaron en sus NDCs la voluntad de llevar adelante actividades de diverso tipo en el área de la eficiencia energética. Entre dichas actividades específicas se destacan, la implementación de programas reducción del uso de la leña, el impulso a la utilización de vehículos híbridos y eléctricos, los programas de modernización del sistema de transporte de pasajeros y carga, las iniciativas de iluminación eficiente, la promoción del uso de equipamiento eficiente y el fomento de la construcción y reciclaje edilicio con criterios de eficiencia energética. En el caso del Brasil, además de expresar la voluntad de promover diversas acciones de eficiencia energética en los sectores industrial y transporte, se asume el compromiso de alcanzar el 10% de ganancia de eficiencia en el sector eléctrico al 2030. Barbados por su parte, mediante la aplicación de políticas de eficiencia energética, propone reducir 22% el consumo de electricidad y lograr una reducción del 29% en el consumo de energía no eléctrico (incluyendo el transporte), respecto del escenario BAU. Asimismo, al 2030 Chile se propone alcanzar un 20% de reducción del consumo de energía respecto del Escenario BAU.

Belice plantea lograr al menos una reducción del 20% en el uso de combustible de transporte convencional para 2030, a la vez que buscará reducir en al menos 30% su intensidad energética per cápita para el año 2033. Asimismo, a través de la NAMA de fogones eficientes, Honduras espera reducir en un 39% el consumo de leña en las familias respecto a los niveles de línea de base.

En el área de las energías renovables, un conjunto importante de países se ha fijado metas a cumplir en el marco del Acuerdo de París. Es así que países como Bolivia, Brasil, Chile, Jamaica, Paraguay, se plantean alcanzar al 2030, incrementos importantes en la participación de las energías renovables en el mix energético global, respecto de un determinado año base. En el caso del Brasil, a dicha meta se le suma el objetivo de llegar al 2030 con una participación de los biocombustibles en el mix energético del 18%.

Otros países como Barbados, Costa Rica, Cuba, Ecuador, Guatemala, Guyana, Haití y Panamá, se han impuesto metas de participación o potencia a incorporar al sistema con base en energías renovables, pero focalizadas específicamente en sus matrices de generación eléctrica. Para alcanzar dichas metas los países proponen recurrir a una amplia gama de políticas, instrumentos y actividades. Entre las mismas sobresalen la creación de marcos propicios para el desarrollo de las energías solar, eólica, geotermia, hidroeléctrica y biomasa, el impulso a la sustitución de combustibles fósiles por biocombustibles y la incorporación de sistemas de almacenamiento de energía que posibiliten en una mejor gestión de los sistemas eléctricos con importante presencia de energías de características fluctuantes. A modo de ejemplo cabe mencionar los casos de: Barbados, donde la energía renovable contribuiría al 2030 con el 65% de la demanda pico, Bolivia, con un aumento en la participación de las energías alternativas en la producción de electricidad del 2 al 8% (llegando al 79% para el conjunto de las renovables) y Chile donde el 20% de la matriz de generación eléctrica al 2025 sería con ERNC.
<table>
<thead>
<tr>
<th>País</th>
<th>Metas en energías renovables</th>
<th>Metas en eficiencia energética</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Condicionales</td>
<td>Incondicionales</td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
<td>● ○</td>
</tr>
<tr>
<td>Barbados</td>
<td></td>
<td>○ ●</td>
</tr>
<tr>
<td>Belice</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Bolivia</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Brasil</td>
<td>● ○</td>
<td>● ○</td>
</tr>
<tr>
<td>Chile</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Colombia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>○ ○</td>
<td>○</td>
</tr>
<tr>
<td>Ecuador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Salvador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granada</td>
<td>○ ○</td>
<td>○ ○</td>
</tr>
<tr>
<td>Guatemala</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Guatemala</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Guyana</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Haití</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Honduras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaica</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>México</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panamá</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraguay</td>
<td>○ ○</td>
<td>○</td>
</tr>
<tr>
<td>Perú</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rep. Dominicana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surinam</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Trinidad y Tobago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Venezuela</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

○ Meta cuantificable
● Meta descriptiva

El hecho que prácticamente ningún país establezca en forma cuantitativa la contribución del sector energético al cumplimiento de los objetivos de reducción de las emisiones de GEI comprometidos en el Acuerdo de París, pone de manifiesto la dificultad del monitoreo de los aportes realizados por este sector en particular, en la consecución de los objetivos generales. No obstante, aquellos países que presentan metas numéricas tanto en materia de eficiencia energética como de impulso al desarrollo de energías renovables, ofrecen la posibilidad de hacer un seguimiento de las mismas, evaluar su impacto en términos de mitigación de emisiones y en consecuencia obtener una estimación del aporte del sector. Del mismo modo, en aquellos casos en que las metas son de carácter descriptivo, en la construcción de los escenarios deberá asumirse que su implementación tendrá unas determinadas consecuencias en términos reducción de emisiones de GEI.
4.3 Hipótesis de trabajo

Si bien, debido a la falta de homogeneidad en la formulación de las NDCs de los países, es muy difícil la agregación geográfica de las metas propuestas e identificar el aporte requerido del sector energético, sí que pueden tomarse como referencia las reducciones planteadas para el 2030 en sus respectivos NDCs por cuatro de los países con mayor peso económico: Brasil (43% respecto al 2005), México (25% respecto al BAU), Argentina (20-40% respecto al BAU) y Colombia (20-30% respecto al BAU). Dadas estas magnitudes, y teniendo en cuenta que la mayoría del resto de países presentan metas más modestas, se puede considerar como una meta referencial para el sector energético de la región integral de ALC, el alcanzar entre un 25 y 30% de reducción de emisiones para el año 2030, respecto a la línea base, representada por el escenario BAU.

Tal como se ha apuntado en la introducción, el objetivo final del presente estudio es llevar a cabo una primera aproximación a la cuestión de la coherencia entre las metas energéticas y las metas medioambientales en la región ALC. Se habla sólo de aproximación porque, tal como acaba de verse en este mismo capítulo, la región no dispone, en general, de metas de reducción de emisiones expresadas en valores cuantitativos. Como metas con las que comparar los resultados obtenidos en los distintos escenarios desarrollados para este estudio, se dispone, principalmente, de valores expresados en forma porcentual contenidos en las NDCs, los cuales se resumen en el Anexo II. Se trata de valores que, además, no siempre son específicos para el sector de la energía. Cuando esto último sucede, puede tenerse en cuenta que, según las comunicaciones nacionales sobre cambio climático, los porcentajes de participación del sector energético en las emisiones totales de GEI son importantes en un número significativo de países, como se pude apreciar en el Anexo VI. Estas observaciones son de relevancia para los análisis del Capítulo 7 y del Capítulo 10.

En el escenario BAU, se considera que, en el período de proyección, existe una ausencia total de políticas que produzcan variaciones en la tendencia histórica de la demanda y en la estructura de la oferta de energía, a partir del año base del estudio. Es por ello que si la demanda tendencial es creciente, las emisiones de GEI, resultarán también crecientes, a partir del año base. Esta hipótesis es también importante para el Capítulo 7 y el Capítulo 10, ya que ello quiere decir que los países que fijaron sus NDCs con anterioridad al 2015, para dicho año, se habían distanciado ya de sus metas.

Por último, y ante la falta de homogeneidad en la definición de las líneas base de emisiones de CO2e utilizadas por los países de ALC como referencia para la formulación de sus NDCs, se ha considerado, a efectos del presente estudio, que dicha línea base está representada por las emisiones de CO2e resultantes de la simulación del escenario BAU. Esta hipótesis es importante para el análisis del Capítulo 8.
5. Construcción del escenario tendencial de línea base (BAU)
5. Construcción del escenario tendencial de línea base (BAU)

5.1 Consideraciones generales
Como se mencionó en la sección introductoria, la construcción del escenario BAU tiene como objetivo establecer una línea base de proyección emisiones de CO2e, en el período de estudio, mediante una metodología común para todas las subregiones, que permita el análisis de la eficacia de las políticas actuales de desarrollo energético (escenario EPA) para alcanzar los compromisos establecidos por los países en sus NDCs.

El escenario BAU se construye bajo las siguientes consideraciones en la demanda y oferta de energía:

- La demanda interna de energía corresponde a los consumos finales de los principales grupos de fuentes energéticas (el petróleo y sus derivados, el gas natural, el carbón mineral y coque, la biomasa y la electricidad) sumados a los consumos propios y las pérdidas.

- Los consumos finales de energía, se proyectan mediante tasas promedio de crecimiento anual de las diferentes fuentes, calculadas aplicando regresión logarítmica lineal a las series históricas de los últimos 10 años (2005-2015), extraídas del SieLAC de OLADE.

- Los consumos propios y las pérdidas están implícitos en los valores de consumo. Por tanto, se calculan para cada año de proyección manteniendo los porcentajes que estos rubros representaban en el año base.

- La oferta de energía cubre la proyección de la demanda interna de cada fuente, preservando las relaciones estructurales del balance de energía del año base (coeficientes técnicos). Es decir que representa una proyección inercial de la matriz de oferta energética, incluida la generación eléctrica, ante la ausencia de cualquier política de cambio o diversificación de dicha matriz.

A continuación, se presentan los resultados obtenidos de la simulación del escenario BAU, de manera integral para cada subregión.

5.2 Brasil

5.2.1 Proyección del consumo final de energía

Tabla 5.1. Proyección del consumo final de energía en Brasil (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>753</td>
<td>886</td>
<td>1,051</td>
<td>1,254</td>
<td>3,5 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>91</td>
<td>101</td>
<td>114</td>
<td>129</td>
<td>2,4 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>84</td>
<td>97</td>
<td>111</td>
<td>127</td>
<td>2,8 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>443</td>
<td>490</td>
<td>552</td>
<td>630</td>
<td>2,4 %</td>
</tr>
<tr>
<td>Electricidad</td>
<td>304</td>
<td>367</td>
<td>444</td>
<td>536</td>
<td>3,8 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,676</td>
<td>1,942</td>
<td>2,272</td>
<td>2,677</td>
<td>3,2 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)
Figura 5.1. Proyección del consumo final de energía en Brasil, escenario BAU

Como se observa en la figura 5.2, en una proyección tendencial, la electricidad y los petrolíferos, ganarían participación en la matriz de consumo final para el año 2030, respecto al año base.

Figura 5.2. Evolución de la matriz de consumo final de energía en Brasil, escenario BAU

Tabla 5.2. Proyección del consumo final de electricidad en Brasil, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>491,241</td>
<td>593,010</td>
<td>716,258</td>
<td>865,592</td>
<td>3,8 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)
Con una tasa promedio de crecimiento anual del 3.8%, el consumo de electricidad durante el período de proyección se incrementa en total en un 76%.

5.2.2 Proyección de la generación eléctrica

Tabla 5.3. Proyección de la generación eléctrica en Brasil, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>359,975</td>
<td>434,567</td>
<td>524,885</td>
<td>634,319</td>
</tr>
<tr>
<td>Gas natural</td>
<td>79,541</td>
<td>96,023</td>
<td>115,980</td>
<td>140,161</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>37,735</td>
<td>45,555</td>
<td>55,022</td>
<td>66,494</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>19,108</td>
<td>23,068</td>
<td>27,862</td>
<td>33,671</td>
</tr>
<tr>
<td>Biomasa</td>
<td>49,059</td>
<td>59,224</td>
<td>71,533</td>
<td>86,447</td>
</tr>
<tr>
<td>Eólica</td>
<td>21,640</td>
<td>26,124</td>
<td>31,554</td>
<td>38,132</td>
</tr>
<tr>
<td>Solar</td>
<td>59</td>
<td>71</td>
<td>86</td>
<td>104</td>
</tr>
<tr>
<td>Nuclear</td>
<td>14,744</td>
<td>17,799</td>
<td>21,498</td>
<td>25,980</td>
</tr>
<tr>
<td>TOTAL</td>
<td>581,861</td>
<td>702,431</td>
<td>848,420</td>
<td>1,025,309</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La diferencia que se observa en la figura 5.4, entre la demanda interna de electricidad (consumo final + consumo propio + pérdidas) y la generación total de esta fuente, corresponde a las importaciones que realiza Brasil, principalmente de la generación de la Central Binacional de Itaipú, que le corresponde a Paraguay.

En virtud de la preservación de los coeficientes técnicos de la oferta de cada fuente, tomada como premisa en el escenario BAU, se puede observar que la estructura de la matriz de generación eléctrica se mantiene a lo largo del período de proyección (Figura 5.5).
5.2.3 Proyección de la oferta total de energía

Tabla 5.4. Proyección de la oferta total de energía en Brasil, escenario BAU (Mtep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>821</td>
<td>966</td>
<td>1,146</td>
<td>1,366</td>
<td>3,5%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>281</td>
<td>327</td>
<td>384</td>
<td>452</td>
<td>3,2%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>127</td>
<td>148</td>
<td>172</td>
<td>200</td>
<td>3,1%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>28</td>
<td>33</td>
<td>40</td>
<td>49</td>
<td>3,8%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>244</td>
<td>294</td>
<td>355</td>
<td>429</td>
<td>3,8%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>655</td>
<td>733</td>
<td>833</td>
<td>960</td>
<td>2,6%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>3,8%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,169</td>
<td>2,518</td>
<td>2,949</td>
<td>3,479</td>
<td>3,2%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 5.6. Proyección de la oferta total de energía en Brasil, escenario BAU

Figura 5.7. Evolución de la matriz de oferta total de energía en Brasil, escenario BAU

Fuente: Resultados de la simulación
Aunque se mantienen los coeficientes técnicos en la oferta de energía, las diferentes tendencias de crecimiento del consumo final de las diferentes fuentes, ocasionan una pequeña variación en la estructura de la matriz de oferta total de energía, como se observa en la figura 5.7.

5.3 México

5.3.1 Proyección del consumo final de energía

Tabla 5.5. Proyección del consumo final de energía en México (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>539</td>
<td>576</td>
<td>622</td>
<td>674</td>
<td>1,5%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>118</td>
<td>141</td>
<td>168</td>
<td>201</td>
<td>3,6%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>47</td>
<td>52</td>
<td>56</td>
<td>61</td>
<td>1,7%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>52</td>
<td>51</td>
<td>52</td>
<td>54</td>
<td>0,3%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>154</td>
<td>186</td>
<td>224</td>
<td>271</td>
<td>3,8%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>910</td>
<td>1,006</td>
<td>1,122</td>
<td>1,261</td>
<td>2,2%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)

En la evolución tendencial del consumo final en México, se nota un incremento importante en la participación de la electricidad y el gas natural, en detrimento de la participación de los petrolíferos (figura 5.9).
Figura 5.9. Evolución de la matriz de consumo final de energía en México, escenario BAU

<table>
<thead>
<tr>
<th>Años</th>
<th>Petróleo y derivados</th>
<th>Carbón mineral y coque</th>
<th>Gas Natural</th>
<th>Biomasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>59%</td>
<td>5%</td>
<td>13%</td>
<td>6%</td>
</tr>
<tr>
<td>2030</td>
<td>53%</td>
<td>5%</td>
<td>16%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SIE/LAC, OLADE (2016)

Tabla 5.6. Proyección del consumo final de electricidad en México, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>248,888</td>
<td>300,174</td>
<td>362,113</td>
<td>436,931</td>
<td>3,8%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SIE/LAC, OLADE (2016)

Figura 5.10. Proyección del consumo final de electricidad en México, escenario BAU

Fuente: Elaboración propia en base a información del SIE/LAC, OLADE (2016)
Al igual que Brasil, México presenta un crecimiento tendencial del consumo de electricidad con una tasa promedio anual de 3.8%, lo que significa un incremento total del 76% en el período de estudio (figura 5.10).

5.3.2 Proyección de la generación eléctrica

Tabla 5.7. Proyección de la generación eléctrica en México, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>30,955</td>
<td>37,33</td>
<td>45,033</td>
<td>54,337</td>
</tr>
<tr>
<td>Gas natural</td>
<td>167,842</td>
<td>202,409</td>
<td>244,175</td>
<td>294,625</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>42,099</td>
<td>50,769</td>
<td>61,245</td>
<td>73,899</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>33,741</td>
<td>40,69</td>
<td>49,086</td>
<td>59,228</td>
</tr>
<tr>
<td>Biomasa</td>
<td>9,503</td>
<td>11,46</td>
<td>13,825</td>
<td>16,681</td>
</tr>
<tr>
<td>Geotermia</td>
<td>6,191</td>
<td>7,466</td>
<td>9,007</td>
<td>10,867</td>
</tr>
<tr>
<td>Eólica</td>
<td>8,667</td>
<td>10,452</td>
<td>12,609</td>
<td>15,214</td>
</tr>
<tr>
<td>Solar</td>
<td>93</td>
<td>112</td>
<td>135</td>
<td>163</td>
</tr>
<tr>
<td>Nuclear</td>
<td>11,453</td>
<td>13,812</td>
<td>16,662</td>
<td>20,105</td>
</tr>
<tr>
<td>TOTAL</td>
<td>310,544</td>
<td>374,499</td>
<td>451,776</td>
<td>545,120</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 5.11. Proyección de la generación eléctrica en México, escenario BAU

Fuente: Resultados de la simulación
Como se observa en la figura 5.11, en un escenario tendencial, México es y será prácticamente autosuficiente en el abastecimiento de la demanda interna de electricidad, siendo las importaciones y exportaciones a Norteamérica y América Central muy marginales.

En el escenario BAU, la matriz de generación eléctrica permanece constante durante todo el período de estudio, siendo el gas natural, el principal recurso para esta actividad energética.

Figura 5.12. Evolución de la matriz de generación eléctrica en México, escenario BAU

5.3.3 Proyección de la oferta total de energía

Tabla 5.8. Proyección de la oferta total de energía en México, escenario BAU (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>580</td>
<td>635</td>
<td>701</td>
<td>778</td>
<td>2,0%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>566</td>
<td>658</td>
<td>769</td>
<td>905</td>
<td>3,2%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>109</td>
<td>126</td>
<td>147</td>
<td>171</td>
<td>3,1%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>21</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>3,8%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>15</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>3,8%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>69</td>
<td>72</td>
<td>77</td>
<td>85</td>
<td>1,4%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>23</td>
<td>34</td>
<td>41</td>
<td>50</td>
<td>5,3%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,382</td>
<td>1,569</td>
<td>1,788</td>
<td>2,052</td>
<td>2,7%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 5.13. Proyección de la oferta total de energía en México, escenario BAU

En la evolución de la matriz energética de México, para el escenario BAU, se nota cierta sustitución de la oferta de petrolíferos por gas natural (figura 5.14).

5.4 América Central

5.4.1 Proyección del consumo final de energía

Tabla 5.9. Proyección del consumo final de energía en América Central, escenario BAU (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>98</td>
<td>110</td>
<td>125</td>
<td>142</td>
<td>2,5%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-0,9%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>77</td>
<td>87</td>
<td>98</td>
<td>110</td>
<td>2,4%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>27</td>
<td>32</td>
<td>37</td>
<td>44</td>
<td>3,2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>205</td>
<td>232</td>
<td>263</td>
<td>299</td>
<td>2,6%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)
La evolución tendencial del consumo final en América Central se caracteriza por un desplazamiento del consumo de biomas y petrolíferos gracias a la mayor penetración de la electricidad, como se puede observar en la figura 5.16.

Tabla 5.10. Proyección del consumo final de electricidad en América Central, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>44,082</td>
<td>51,602</td>
<td>60,466</td>
<td>70,919</td>
<td>3,2 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)
El consumo de electricidad en América Central, tiene un incremento total del 61% durante el período de proyección.

5.4.2 Proyección de la generación eléctrica

Tabla 5.11. Proyección de la generación eléctrica en América Central, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>25,195</td>
<td>29,494</td>
<td>34,560</td>
<td>40,535</td>
</tr>
<tr>
<td>Gas natural</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>11,004</td>
<td>12,881</td>
<td>15,094</td>
<td>17,703</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>5,446</td>
<td>6,375</td>
<td>7,470</td>
<td>8,761</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,810</td>
<td>2,119</td>
<td>2,483</td>
<td>2,912</td>
</tr>
<tr>
<td>Geotermia</td>
<td>5,670</td>
<td>6,637</td>
<td>7,777</td>
<td>9,122</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,291</td>
<td>1,511</td>
<td>1,771</td>
<td>2,077</td>
</tr>
<tr>
<td>Solar</td>
<td>1,408</td>
<td>1,648</td>
<td>1,932</td>
<td>2,266</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51,824</td>
<td>60,666</td>
<td>71,087</td>
<td>83,376</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
En el escenario tendencial BAU, América Central se mantiene como subregión autosuficiente en el abastecimiento de la demanda interna de electricidad, siendo la hidroenergía el principal recurso utilizado para dicho efecto.

5.4.3 Proyección de la oferta total de energía

Tabla 5.12. Proyección de la oferta total de energía en América Central, escenario BAU (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>118</td>
<td>135</td>
<td>154</td>
<td>176</td>
<td>2,7 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>2,5 %</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>3,2 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>82</td>
<td>93</td>
<td>105</td>
<td>119</td>
<td>2,5 %</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>21</td>
<td>3,2 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>243</td>
<td>277</td>
<td>316</td>
<td>361</td>
<td>2,7 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La matriz de oferta total de energía en América Central, para el escenario BAU, no sufre variaciones importantes en el período de proyección, como se puede observar en la figura 5.21.

5.5 Subregión Andina

5.5.1 Proyección del consumo final de energía
Tabla 5.13. Proyección del consumo final de energía en la Subregión Andina, escenario BAU (Mtep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>447</td>
<td>544</td>
<td>670</td>
<td>832</td>
<td>4,2%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>134</td>
<td>133</td>
<td>135</td>
<td>140</td>
<td>0,3%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>29</td>
<td>36</td>
<td>44</td>
<td>54</td>
<td>4,2%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>60</td>
<td>64</td>
<td>71</td>
<td>79</td>
<td>1,9%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>133</td>
<td>161</td>
<td>196</td>
<td>240</td>
<td>4,0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>803</td>
<td>939</td>
<td>1,115</td>
<td>1,346</td>
<td>3,5%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)

Figura 5.22. Proyección del consumo final de energía en la Subregión Andina, escenario BAU

Figura 5.23. Evolución de la matriz de consumo final de energía en la Subregión Andina, escenario BAU

En el escenario tendencial BAU, los petrolíferos y electricidad ganan participación en la matriz de consumo final de la Subregión Andina, mientras que, del gas natural y la biomasa, su participación decrece. (ver Figura 5.23).
Tabla 5.14. Proyección del consumo final de electricidad en la Subregión Andina, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Subregión</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>215,097</td>
<td>259,898</td>
<td>316,389</td>
<td>387,884</td>
<td>4,0 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)

Figura 5.24. Proyección del consumo final de electricidad en la Subregión Andina, escenario BAU

El crecimiento tendencial del consumo de electricidad en la subregión Andina, representa un incremento total del 80% durante el período de proyección. Con una tasa promedio anual del 4.0%, es la subregión con crecimiento más acelerado del consumo eléctrico, de las seis subregiones analizadas.

5.5.2 Proyección de la generación eléctrica

Tabla 5.15. Proyección de la generación eléctrica en la subregión Andina, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Fuentes</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>152,886</td>
<td>184,859</td>
<td>225,039</td>
<td>275,892</td>
</tr>
<tr>
<td>Gas natural</td>
<td>77,709</td>
<td>93,961</td>
<td>114,384</td>
<td>140,231</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>39,985</td>
<td>48,347</td>
<td>58,856</td>
<td>72,156</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>6,953</td>
<td>8,407</td>
<td>10,235</td>
<td>12,548</td>
</tr>
<tr>
<td>Biomasa</td>
<td>2,844</td>
<td>3,439</td>
<td>4,186</td>
<td>5,132</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,503</td>
<td>1,817</td>
<td>2,212</td>
<td>2,712</td>
</tr>
<tr>
<td>Solar</td>
<td>323</td>
<td>390</td>
<td>475</td>
<td>582</td>
</tr>
<tr>
<td>TOTAL</td>
<td>282,203</td>
<td>341,220</td>
<td>415,387</td>
<td>509,253</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La Subregión Andina, basa su matriz de generación eléctrica, principalmente en la hidroenergía y el gas natural y es autosuficiente respecto del abastecimiento de la demanda interna de electricidad.

5.5.3 Proyección de la oferta total de energía

Tabla 5.16. Proyección de la oferta total de energía en la Subregión Andina, escenario BAU (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>591</td>
<td>724</td>
<td>895</td>
<td>1,114</td>
<td>4,3 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>525</td>
<td>570</td>
<td>631</td>
<td>711</td>
<td>2,0 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>41</td>
<td>50</td>
<td>61</td>
<td>75</td>
<td>4,1 %</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>118</td>
<td>143</td>
<td>174</td>
<td>214</td>
<td>4,0 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>63</td>
<td>68</td>
<td>76</td>
<td>86</td>
<td>2,1 %</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4,0 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,339</td>
<td>1,557</td>
<td>1,838</td>
<td>2,202</td>
<td>3,4 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 5.27. Proyección de la oferta total de energía en la Subregión Andina, escenario BAU

Figura 5.28. Evolución de la matriz de oferta total de energía en la Subregión Andina, escenario BAU

De manera similar a la evolución de la matriz de consumo final, en la matriz de oferta total de energía, existe un incremento en la participación de los petrolífero, ganándole terreno al gas natural (Figura 5.28).

5.6 Cono Sur
5.6.1 Proyección del consumo final de energía
Tabla 5.17. Proyección del consumo final de energía en el Cono Sur, escenario BAU (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>312</td>
<td>348</td>
<td>392</td>
<td>443</td>
<td>2,4 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>163</td>
<td>186</td>
<td>214</td>
<td>247</td>
<td>2,8 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0,4 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>100</td>
<td>108</td>
<td>118</td>
<td>130</td>
<td>1,8 %</td>
</tr>
<tr>
<td>Electricidad</td>
<td>136</td>
<td>163</td>
<td>190</td>
<td>235</td>
<td>3,7 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>717</td>
<td>812</td>
<td>925</td>
<td>1,061</td>
<td>2,6 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)

Figura 5.29. Proyección del consumo final de energía en el Cono Sur, escenario BAU

Figura 5.30. Evolución de la matriz de consumo final de energía en el Cono Sur, escenario BAU

La variación más relevante que se observa en la evolución de la matriz de consumo del Cono Sur, en el escenario BAU, es la mayor penetración de electricidad, desplazando en algunos puntos porcentuales a la biomasa y a los petrolíferos (Figura 5.30).
Tabla 5.18. Proyección del consumo final de electricidad en el Cono Sur, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Subregión</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>219,915</td>
<td>263,434</td>
<td>315,940</td>
<td>379,356</td>
<td>3,7%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SielAC, OLADE (2016)

Figura 5.31. Proyección del consumo final de electricidad en el Cono Sur, escenario BAU

En el escenario BAU, El Cono Sur, incrementa su consumo anual de electricidad en un 73%, durante el período de estudio.

5.6.2 Proyección de la generación eléctrica

Tabla 5.19. Proyección de la generación eléctrica en el Cono Sur, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctica</td>
<td>115,574</td>
<td>142,967</td>
<td>171,463</td>
<td>205,879</td>
</tr>
<tr>
<td>Gas natural</td>
<td>80,222</td>
<td>99,237</td>
<td>119,016</td>
<td>142,905</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>21,789</td>
<td>26,953</td>
<td>32,325</td>
<td>38,813</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>44,972</td>
<td>55,632</td>
<td>66,720</td>
<td>80,112</td>
</tr>
<tr>
<td>Biomasa</td>
<td>4,944</td>
<td>6,115</td>
<td>7,334</td>
<td>8,806</td>
</tr>
<tr>
<td>Eólica</td>
<td>6,112</td>
<td>7,561</td>
<td>9,068</td>
<td>10,888</td>
</tr>
<tr>
<td>Solar</td>
<td>3,799</td>
<td>4,700</td>
<td>5,636</td>
<td>6,768</td>
</tr>
<tr>
<td>Nuclear</td>
<td>7,081</td>
<td>8,759</td>
<td>10,505</td>
<td>12,613</td>
</tr>
<tr>
<td>TOTAL</td>
<td>284,493</td>
<td>351,923</td>
<td>422,067</td>
<td>506,784</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Como se observa en la figura 5.32, el Cono Sur es una subregión exportadora neta de electricidad, ya que su generación total es superior a su demanda interna. La principal exportación está constituida por la energía que Paraguay le vende a Brasil, de la generación que le corresponde en la Central Hidroeléctrica Binacional de Itaipú. Los principales recursos utilizados para la generación eléctrica son la hidroenergía y el gas natural, aunque cabe destacar que es la subregión donde mayor relevancia tiene el uso de carbón mineral para generación eléctrica (Figura 5.33).

5.6.3 Proyección de la oferta total de energía
Tabla 5.20. Proyección de la oferta total de energía en El Cono Sur, escenario BAU (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>374</td>
<td>422</td>
<td>476</td>
<td>541</td>
<td>2.5%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>384</td>
<td>451</td>
<td>525</td>
<td>614</td>
<td>3.2%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>71</td>
<td>84</td>
<td>98</td>
<td>116</td>
<td>3.3%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>3.9%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>76</td>
<td>94</td>
<td>113</td>
<td>135</td>
<td>3.9%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>124</td>
<td>138</td>
<td>153</td>
<td>172</td>
<td>2.2%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>6</td>
<td>8,000</td>
<td>9</td>
<td>11</td>
<td>3.9%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,052</td>
<td>1,216</td>
<td>1,398</td>
<td>1,618</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 5.34. Proyección de la oferta total de energía en el Cono Sur, escenario BAU

![Gráfico de líneas](image_url)

Fuente: Resultados de la simulación

Figura 5.35. Evolución de la matriz de oferta total de energía en El Cono Sur, escenario BAU

![Diagrama de pastel](image_url)

Fuente: Resultados de la simulación
En el escenario tendencial BAU, la matriz de oferta total de energía del Cono Sur, no sufre variaciones muy importantes durante el periodo de proyección, sin embargo, se nota cierto desplazamiento de los petrolíferos, por gas natural (Figura 5.35).

5.7 El Caribe

5.7.1 Proyección del consumo final de energía

Tabla 5.21. Proyección del consumo final de energía en El Caribe, escenario BAU (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>113</td>
<td>113</td>
<td>114</td>
<td>117</td>
<td>0,2 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>85</td>
<td>94</td>
<td>105</td>
<td>116</td>
<td>2,1 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>3,1 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>0,6 %</td>
</tr>
<tr>
<td>Electricidad</td>
<td>28</td>
<td>34</td>
<td>41</td>
<td>50</td>
<td>3,9 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>266</td>
<td>283</td>
<td>303</td>
<td>328</td>
<td>1,4 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)

Figura 5.36. Proyección del consumo final de energía en El Caribe, escenario BAU

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)
El consumo final de energía en El Caribe, se incrementa con relativa lentitud (1.4% anual), siendo las principales fuentes consumidas, los petrolíferos y el gas natural. En la evolución de la matriz de consumo, cabe destacar la penetración de electricidad y gas natural, restándole participación a los petrolíferos (Figura 5.37).

Tabla 5.22. Proyección del consumo final de electricidad en El Caribe, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Subregión</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>45,722</td>
<td>54,961</td>
<td>66,436</td>
<td>80,745</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)

Figura 5.38. Proyección del consumo final de electricidad en El Caribe, escenario BAU

Fuente: Elaboración propia en base a información del SieLAC, OLADE (2016)
Pese a que como se mencionó, el consumo total de energía crece lentamente en la subregión de El Caribe, el consumo de electricidad presenta un crecimiento acelerado en esta subregión, con la segunda tasa promedio anual más alta luego de la Subregión Andina. Esto se debe a que muchos de los países que integran esta subregión se encuentra en proceso de electrificación de sus zonas aisladas.

5.7.2 Proyección de la generación eléctrica

Tabla 5.23. Proyección de la generación eléctrica en El Caribe, escenario BAU (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>2,398</td>
<td>2,882</td>
<td>3,484</td>
<td>4,235</td>
</tr>
<tr>
<td>Gas natural</td>
<td>22,039</td>
<td>26,493</td>
<td>32,025</td>
<td>38,922</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>25,674</td>
<td>30,862</td>
<td>37,306</td>
<td>45,341</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>2,696</td>
<td>3,241</td>
<td>3,918</td>
<td>4,762</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,573</td>
<td>1,891</td>
<td>2,286</td>
<td>2,778</td>
</tr>
<tr>
<td>Eólica</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solar</td>
<td>308</td>
<td>371</td>
<td>448</td>
<td>544</td>
</tr>
<tr>
<td>Nuclear</td>
<td>81</td>
<td>97</td>
<td>117</td>
<td>143</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,769</td>
<td>65,837</td>
<td>79,583</td>
<td>96,724</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

El Caribe es un a subregión autoabastecida de electricidad y su generación eléctrica depende fundamentalmente de gas natural y petrolíferos, que representan en conjunto cerca del 90% de la matriz (Figuras 5.39 y 5.40).

Figura 5.39. Proyección de la generación eléctrica en El Caribe, escenario BAU
Figura 5.40. Evolución de la matriz de generación eléctrica en el Cono Sur, escenario BAU

5.7.3 Proyección de la oferta total de energía
Tabla 5.24. Proyección de la oferta total de energía en El Caribe, escenario BAU (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>150</td>
<td>158</td>
<td>170</td>
<td>185</td>
<td>1,4%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>138</td>
<td>155</td>
<td>176</td>
<td>199</td>
<td>2,5%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>3,5%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3,9%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>47</td>
<td>50</td>
<td>52</td>
<td>55</td>
<td>1,0%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>0,2</td>
<td>0,3</td>
<td>0,4</td>
<td>0,4</td>
<td>3,9%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>347</td>
<td>376</td>
<td>413</td>
<td>458</td>
<td>1,9%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
5.8 América Latina y El Caribe (ALC)
5.8.1 Proyección del consumo final de energía

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>2,261</td>
<td>2,579</td>
<td>2,974</td>
<td>3,462</td>
<td>2,9 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>590</td>
<td>656</td>
<td>736</td>
<td>834</td>
<td>2,3 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>174</td>
<td>197</td>
<td>224</td>
<td>256</td>
<td>2,6 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>767</td>
<td>837</td>
<td>928</td>
<td>1,042</td>
<td>2,1 %</td>
</tr>
<tr>
<td>Electricidad</td>
<td>784</td>
<td>944</td>
<td>1,139</td>
<td>1,376</td>
<td>3,8 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4,576</td>
<td>5,212</td>
<td>6,000</td>
<td>6,971</td>
<td>2,8 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

En la evolución tendencial de la matriz de oferta total de El Caribe, se puede observar la ganancia en participación del gas natural, desplazando a los petrolíferos y a la biomasa (Figura 5.42).
La variación más importante en la matriz de consumo final de energía en ALC, durante el periodo de proyección, consiste en la reducción de la participación de la biomasa y el gas natural, debido a la mayor penetración de la electricidad (Figura 5.44).

<table>
<thead>
<tr>
<th>Subregión</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>1,264,966</td>
<td>1,523,104</td>
<td>1,837,631</td>
<td>2,221,463</td>
<td>3,8 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La tasa de crecimiento promedio anual del consumo de electricidad para ALC, resulta ser relativamente alta (3.8%), lo que produce un incremento total de dicho consumo del 76%, en el periodo de proyección.

5.8.2 Proyección de la generación eléctrica

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>686,983</td>
<td>832,100</td>
<td>1,004,464</td>
<td>1,215,196</td>
</tr>
<tr>
<td>Gas natural</td>
<td>427,355</td>
<td>518,122</td>
<td>625,579</td>
<td>756,844</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>112,917</td>
<td>137,413</td>
<td>165,291</td>
<td>199,082</td>
</tr>
<tr>
<td>Biomasa</td>
<td>69,732</td>
<td>84,248</td>
<td>101,647</td>
<td>122,757</td>
</tr>
<tr>
<td>Geotermia</td>
<td>11,861</td>
<td>14,103</td>
<td>16,784</td>
<td>19,989</td>
</tr>
<tr>
<td>Eólica</td>
<td>39,521</td>
<td>47,836</td>
<td>57,661</td>
<td>69,567</td>
</tr>
<tr>
<td>Solar</td>
<td>5,763</td>
<td>7,019</td>
<td>8,382</td>
<td>10,025</td>
</tr>
<tr>
<td>Nuclear</td>
<td>33,277</td>
<td>40,369</td>
<td>48,664</td>
<td>58,698</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,565,695</td>
<td>1,896,577</td>
<td>2,288,319</td>
<td>2,766,565</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La matriz de generación eléctrica de la región de América Latina y El Caribe, depende fundamentalmente de la hidroenergía y el gas natural, de acuerdo a las premisas del escenario BAU, la estructura de dicha matriz se mantiene durante todo el período de estudio.

5.8.3 Proyección de la oferta total de energía

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>2,634</td>
<td>3,04</td>
<td>3,541</td>
<td>4,161</td>
<td>3,1 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>1,895</td>
<td>2,162</td>
<td>2,485</td>
<td>2,881</td>
<td>2,8 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>369</td>
<td>432</td>
<td>506</td>
<td>594</td>
<td>3,2 %</td>
</tr>
<tr>
<td>Nuclear</td>
<td>64</td>
<td>78</td>
<td>94</td>
<td>113</td>
<td>3,9 %</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>471</td>
<td>571</td>
<td>689</td>
<td>834</td>
<td>3,9 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,041</td>
<td>1,154</td>
<td>1,297</td>
<td>1,477</td>
<td>2,4 %</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>57</td>
<td>75</td>
<td>90000</td>
<td>109</td>
<td>4,3 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6,532</td>
<td>7,512</td>
<td>8,702</td>
<td>10,169</td>
<td>3,0 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
En el escenario tendencial BAU, las variaciones de la matriz de oferta total de energía de ALC, resultan ser irrelevantes, prácticamente se mantiene la estructura porcentual del año base.
6. Construcción del Escenario de Políticas Actuales (EPA)
6. Construcción del Escenario de Políticas Actuales (EPA)

6.1 Consideraciones generales

El objetivo del escenario EPA, es simular la evolución de la matriz energética de las diferentes subregiones, de acuerdo con las políticas oficiales de desarrollo energético, con énfasis en el sector eléctrico, representadas por los planes de expansión del sector; y analizar si esta evolución, es coherente con las metas de reducción de emisiones de GEI, formuladas en las NDCs de los países.

Las premisas utilizadas para la construcción del escenario EPA son las siguientes:

- Para la proyección del consumo de energía del escenario EPA, se procuró en primera instancia utilizar las tasas de crecimiento promedio anual propuestas por los países en sus planes de expansión del sector energético integral.
- Dado que la mayoría de los países de la Región publican planes de expansión solamente para el sector eléctrico, el consumo de las fuentes de energía, de las que no se dispuso de proyecciones oficiales, fue estimado con base en regresiones logarítmicas lineales de series histórica, pero a diferencia del escenario BAU, por tratarse el escenario EPA de un escenario de políticas activas, donde se incluye ya la promoción de la eficiencia energética, dichas tasas se afectaron por un factor estimado de amortiguamiento, acorde a la diminución de intensidad energética en la región de los últimos 5 años.
- Para los casos en que los planes de expansión contemplan más de un escenario de proyección del consumo, se consideró el definido como escenario medio, recomendado o de referencia.
- La oferta de electricidad se proyecta con base en los cronogramas de instalación/retiro de capacidad instalada presentados en los planes de expansión de los países. Mediante una simulación de despacho por orden de mérito de la capacidad disponible de cada tecnología, para cada año del período de proyección.
- El orden de despacho de las tecnologías de oferta de electricidad en cada subregión, responde principalmente a un criterio económico, aunque también por consideraciones de tipo ambiental y tecnológico, las energías renovables son priorizadas en dicho despacho. Es decir, las tecnologías que generalmente ocupan la base de las curvas monótonas de carga, como son la nuclear, la geotérmica y la hidroeléctrica, tienen los primeros puestos en el orden de despacho.

\[2\] Se consideró un factor único en toda la región de 0.03 puntos porcentuales menos para las tasas de crecimiento en relación con las tendenciales del BAU, para los principales consumos energéticos. Esto resultó en ahorros de entre el 2 y 3% en los consumos proyectados al 2035, dependiendo de la subregión. Esta diferencia es suficientemente pequeña como para que no tenga una influencia significativa en el análisis comparativo con las metas de los NDCs.

\[3\] La monótona de carga es una curva que presenta, para un período determinado, la distribución de la demanda de potencia en el tiempo, ordenada de mayor a menor; y se usa para caracterizar la carga y establecer la política de despacho de la generación eléctrica.
Luego, por un criterio ambiental, se da prioridad a la eólica, la solar y la biomasa, de manera que estas tecnologías, con fuentes renovables, puedan ser aprovechadas a su máxima capacidad disponible; posteriormente, se da paso a las tecnologías potenciadas con fuentes fósiles, en orden de costos operativos: centrales a carbón mineral, a gas natural y a diésel y fuel oil. Finalmente, con excepción de Brasil, cuyo caso se explica en la sección 6.2.2, el despacho se cierra con importaciones de electricidad, que se aplica, solamente si la capacidad instalada de generación eléctrica de la subregión es insuficiente para cubrir la demanda interna de electricidad y si existe interconexión con otras subregiones.

• Dado que los planes de expansión consultados de los países, consideran diferentes años base y períodos de proyección, los cronogramas de expansión del sector eléctrico fueron ajustados, de acuerdo al año base y período de proyección del presente estudio.

• Aunque existe la duda de si los países, han contemplado los efectos del Cambio Climático sobre la demanda y oferta de electricidad al momento de formular sus respectivos planes de expansión, se tiene la tranquilidad que de acuerdo al estudio realizado por OLADE en la región de América Central [21] y algunos artículos técnicos consultados sobre este tema [65] [69], para el horizonte del presente estudio (2030), todavía estos efectos se los puede considerar imperceptibles y por lo tanto no afectarían de forma relevante los resultados obtenidos de la simulación del escenario EPA.

A continuación, se presentan las principales características de evolución de la matriz energética para cada una de las subregiones analizadas, bajo las premisas del escenario EPA.
6.2 Brasil

6.2.1 Proyección del consumo final de energía

Tabla 6.1. Proyección del consumo final de energía en Brasil, escenario EPA (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>753</td>
<td>878</td>
<td>1,031</td>
<td>1,217</td>
<td>3,3 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>91</td>
<td>100</td>
<td>111</td>
<td>125</td>
<td>2,1 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>84</td>
<td>96</td>
<td>110</td>
<td>125</td>
<td>2,7 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>443</td>
<td>485</td>
<td>540</td>
<td>609</td>
<td>2,2 %</td>
</tr>
<tr>
<td>Electricidad</td>
<td>304</td>
<td>362</td>
<td>431</td>
<td>514</td>
<td>3,6 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,676</td>
<td>1,922</td>
<td>2,223</td>
<td>2,590</td>
<td>2,9 %</td>
</tr>
</tbody>
</table>

Fuente: Plan decenal de expansión de energía 2026 (PDE 2026)

Figura 6.1. Proyección del consumo final de energía en Brasil, escenario EPA

Fuente: Elaboración propia en base al Plan Decenal de Energía de Brasil (2016-2026)

Figura 6.2. Evolución de la matriz de consumo final de energía en Brasil, escenario EPA

Fuente: Elaboración propia en base al Plan Decenal de Energía de Brasil (2016-2026)
La evolución de la matriz de consumo final de Brasil en términos estructurales para el escenario EPA, no es diferente a la que ya se presentó en el escenario BAU, sin embargo, en términos absolutos, hay una reducción en la tasa de crecimiento promedio anual del consumo total de energía pasando del 3.2% en el escenario BAU a 2.9% en el escenario EPA.

Tabla 6.2. Proyección del consumo final de electricidad en Brasil, escenario EPA (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>491,241</td>
<td>584,529</td>
<td>695,921</td>
<td>828,996</td>
<td>3.6 %</td>
</tr>
</tbody>
</table>

Figura 6.3. Proyección del consumo final de electricidad en Brasil, escenario EPA

Para el escenario EPA, el consumo de electricidad crece a una tasa promedio anual de 3.6%, lo que significa dos décimas porcentuales menos que la tasa correspondiente al escenario BAU. Esta diferencia, reduce el consumo de electricidad anual al final del período de estudio en un 4%, lo que se puede atribuir a medidas de eficiencia energética en el sector eléctrico inmersas en las políticas actuales de desarrollo del sector.

6.2.2 Proyección de la generación eléctrica

Tabla 6.3. Cronogramas de instalación/retiro de capacidad instalada (MW) en Brasil, Escenario EPA

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diesel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>3,848</td>
<td>1,215</td>
<td>-3,577</td>
<td>-215</td>
<td>137.0</td>
<td>0</td>
<td>2,392</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>5,380</td>
<td>991</td>
<td>0</td>
<td>0</td>
<td>129.0</td>
<td>0</td>
<td>2,818</td>
<td>939</td>
<td>0</td>
</tr>
<tr>
<td>2018</td>
<td>5,218</td>
<td>280</td>
<td>0</td>
<td>0</td>
<td>172.0</td>
<td>0</td>
<td>2,755</td>
<td>1,030</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>2,285</td>
<td>0</td>
<td>0</td>
<td>340</td>
<td>324.0</td>
<td>0</td>
<td>1,047</td>
<td>670</td>
<td>0</td>
</tr>
<tr>
<td>2020</td>
<td>265</td>
<td>1,521</td>
<td>0</td>
<td>71</td>
<td>0</td>
<td>1,000</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2021</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>622</td>
<td>0</td>
<td>1,805</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2022</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,804</td>
<td>0</td>
<td>0</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,804</td>
<td>0</td>
<td>0</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2024</td>
<td>533</td>
<td>0</td>
<td>-984</td>
<td>0</td>
<td>568.0</td>
<td>0</td>
<td>1,804</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>2025</td>
<td>736</td>
<td>584</td>
<td>-1,482</td>
<td>0</td>
<td>566.0</td>
<td>0</td>
<td>1,804</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>2026</td>
<td>829</td>
<td>583</td>
<td>-206</td>
<td>0</td>
<td>568.0</td>
<td>0</td>
<td>1,804</td>
<td>1,000</td>
<td>1,405</td>
</tr>
<tr>
<td>2027</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>600.0</td>
<td>0</td>
<td>2,000</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>2028</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>600.0</td>
<td>0</td>
<td>2,000</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>2029</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>600.0</td>
<td>0</td>
<td>2,000</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>2030</td>
<td>1,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>600.0</td>
<td>0</td>
<td>2,000</td>
<td>1,000</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en el Plan Decenal de Energía de Brasil (2016-2026)
Figura 6.4. Cronograma de instalación/retiro de capacidad instalada en Brasil

Debido a que el último Plan Decenal de Energía de Brasil (PDE) [1], extiende sus proyecciones solamente hasta el 2026, los cuatro años restantes del período de estudio (2027-2030) se equiparon según las tendencias de expansión de las diferentes tecnologías de generación eléctrica identificadas en el período 2016-2026. Como se observa en la Figura 6.4, las tecnologías de mayor expansión en capacidad instalada son en orden de importancia, la eólica, la solar, la hidráulica y la biomasa.

Tabla 6.4. Proyección de la capacidad instalada en Brasil, escenario EPA (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>86,540</td>
<td>103,556</td>
<td>105,685</td>
<td>110,514</td>
</tr>
<tr>
<td>Gas natural</td>
<td>11,317</td>
<td>14,672</td>
<td>16,756</td>
<td>17,339</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>5,542</td>
<td>1,965</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>3,064</td>
<td>3,189</td>
<td>3,189</td>
<td>3,189</td>
</tr>
<tr>
<td>Biomasa</td>
<td>15,773</td>
<td>16,606</td>
<td>19,397</td>
<td>22,365</td>
</tr>
<tr>
<td>Eólica</td>
<td>9,029</td>
<td>19,041</td>
<td>28,062</td>
<td>37,866</td>
</tr>
<tr>
<td>Solar</td>
<td>37</td>
<td>3,676</td>
<td>8,676</td>
<td>13,676</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1,990</td>
<td>1,990</td>
<td>1,990</td>
<td>3,395</td>
</tr>
<tr>
<td>TOTAL</td>
<td>133,292</td>
<td>164,696</td>
<td>183,756</td>
<td>208,345</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en el "Plan Decenal de Energía de Brasil 2016-2026"
De acuerdo al cronograma de instalación/retiro implementado, la capacidad instalada de generación eléctrica en Brasil se incrementa en un 65%, resultando evidente el incremento en participación porcentual de las ERNC, al pasar de un 17% en el año base al 35% en el año 2030.

A diferencia de las otras subregiones analizadas, donde la importación se considera la opción de última instancia en la prioridad de despacho, en el caso de Brasil, las importaciones de electricidad corresponden principalmente a la parte de generación de la Central Binacional de Itaipú, que le pertenece a Paraguay, pero que se consume en Brasil. Por lo tanto, a esta energía se le asigna una prioridad de despacho a continuación de las hidroeléctricas nacionales.

Tabla 6.5. Prioridad de despacho de las tecnologías de generación eléctrica en Brasil

<table>
<thead>
<tr>
<th>Orden de despacho</th>
<th>Tecnología</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nuclear</td>
</tr>
<tr>
<td>2</td>
<td>Hidroeléctrica</td>
</tr>
<tr>
<td>3</td>
<td>Importación desde Paraguay</td>
</tr>
<tr>
<td>4</td>
<td>Eólica</td>
</tr>
<tr>
<td>5</td>
<td>Solar</td>
</tr>
<tr>
<td>6</td>
<td>Biomasa</td>
</tr>
<tr>
<td>7</td>
<td>Carbón mineral</td>
</tr>
<tr>
<td>8</td>
<td>Gas natural</td>
</tr>
<tr>
<td>9</td>
<td>Diésel-Fuel</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla 6.6. Proyección de la generación de electricidad en Brasil, escenario EPA (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>359,975</td>
<td>471,718</td>
<td>499,932</td>
<td>580,862</td>
</tr>
<tr>
<td>Gas natural</td>
<td>79,541</td>
<td>59,342</td>
<td>99,149</td>
<td>105,909</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>37,735</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>19,108</td>
<td>19,888</td>
<td>19,888</td>
<td>19,888</td>
</tr>
<tr>
<td>Biomasa</td>
<td>49,059</td>
<td>51,649</td>
<td>60,339</td>
<td>69,561</td>
</tr>
<tr>
<td>Eólica</td>
<td>21,640</td>
<td>66,721</td>
<td>110,622</td>
<td>149,269</td>
</tr>
<tr>
<td>Solar</td>
<td>59</td>
<td>7,729</td>
<td>18,241</td>
<td>28,753</td>
</tr>
<tr>
<td>Nuclear</td>
<td>14,744</td>
<td>14,744</td>
<td>14,744</td>
<td>25,153</td>
</tr>
<tr>
<td>TOTAL</td>
<td>581,861</td>
<td>691,791</td>
<td>822,906</td>
<td>979,395</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 6.6. Proyección de la generación eléctrica en Brasil, escenario EPA
Como se observa en la figura 6.6, Brasil continúa siendo importador neto de electricidad durante todo el período de proyección, manteniendo importaciones principalmente de la generación de la Central Binacional de Itaipú, perteneciente a Paraguay.

En concordancia con la expansión de la capacidad instalada, la generación eléctrica en Brasil evoluciona hacia un incremento importante de participación de las ERNC, especialmente de la energía eólica, la cual pasa de un 4% en el año base a un 15% en el año 2030, lo que, en conjunto con la hidroenergía, la biomasa y la energía solar, le proporcionan a la matriz de generación eléctrica del año 2030 un índice de renovabilidad del 85%, frente al 74% que presentaba en el año base (ver figura 6.7).

6.2.3 Proyección de la oferta total de energía

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.c.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>821</td>
<td>1,035</td>
<td>1,210</td>
<td>1,432</td>
<td>3.8%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>281</td>
<td>264</td>
<td>353</td>
<td>389</td>
<td>2.2%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>127</td>
<td>139</td>
<td>154</td>
<td>171</td>
<td>2.0%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>47</td>
<td>3.6%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>244</td>
<td>317</td>
<td>340</td>
<td>396</td>
<td>3.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>655</td>
<td>711</td>
<td>795</td>
<td>898</td>
<td>2.1%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>13</td>
<td>46</td>
<td>80</td>
<td>110</td>
<td>11.2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,169</td>
<td>2,539</td>
<td>2,959</td>
<td>3,444</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Como se puede apreciar en la figura 6.9, la matriz de oferta total de energía no sufre cambios estructurales importantes a lo largo del período de proyección, ya que continua el predominio de los hidrocarburos (petrolíferos y gas natural) y la biomasa. Aunque el incremento de la participación de ERNC como la eólica y solar (otras renovables) es muy importante en la matriz de generación eléctrica, su participación es marginal, en la matriz de oferta total de energía, incluso a finales del período de proyección, alcanzando apenas cerca de un 3%.

6.3 México

6.3.1 Proyección del consumo final de energía

Tabla 6.8. Proyección del consumo final de energía en México (Mbep), Escenario EPA

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>539</td>
<td>571</td>
<td>610</td>
<td>654</td>
<td>1,3 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>118</td>
<td>139</td>
<td>164</td>
<td>193</td>
<td>3,3 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>47</td>
<td>52</td>
<td>56</td>
<td>61</td>
<td>1,7 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>52</td>
<td>51</td>
<td>52</td>
<td>54</td>
<td>0,3 %</td>
</tr>
<tr>
<td>Electricidad</td>
<td>154</td>
<td>184</td>
<td>218</td>
<td>260</td>
<td>3,5 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>910</td>
<td>996</td>
<td>1,099</td>
<td>1,223</td>
<td>2,0 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en el documento “Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles Más Limpios” (SENER, 2016)
Figura 6.10. Proyección del consumo final de energía en México, Escenario EPA

Fuente: Elaboración propia con base en el documento “Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles Más Limpios” (SENER, 2016)

Figura 6.11. Evolución de la matriz de consumo final de energía de México, Escenario EPA

Fuente: Elaboración propia con base en el documento “Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles Más Limpios” (SENER, 2016)
Al ser la electricidad y el gas natural las fuentes de más rápido crecimiento en el consumo final de energía, ganan participación porcentual en la matriz, mientras que los petrolíferos, pierden participación como se observa en la Figura 6.11.

Tabla 6.9. Proyección del consumo final de electricidad de México (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>248,895</td>
<td>296,206</td>
<td>352,571</td>
<td>419,73</td>
<td>3,5 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en planes de expansión del sector eléctrico de los países

Figura 6.12. Proyección del consumo final de electricidad en México, Escenario EPA

El consumo de electricidad en México es impulsado principalmente por los sectores industrial y residencial. Con una tasa de crecimiento promedio anual del 3,5%, dicho consumo se incrementa un total de 69% respecto al año base durante el periodo de proyección.

6.3.2 Proyección de la generación eléctrica

Tabla 6.10. Cronogramas de instalación/retiro de capacidad instalada en México, Escenario EPA (MW)

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Edfica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>México</td>
<td>2016</td>
<td>101</td>
<td>2,211</td>
<td>-2,280</td>
<td>378</td>
<td>527</td>
<td>1,361</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>53</td>
<td>1,284</td>
<td>1,958</td>
<td>1,096</td>
<td>468</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>29</td>
<td>3,404</td>
<td>-1,355</td>
<td>750</td>
<td>10</td>
<td>1,176</td>
<td>2,364</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>1,968</td>
<td>4,974</td>
<td></td>
<td>1,452</td>
<td></td>
<td>1,727</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>1,917</td>
<td>2,187</td>
<td></td>
<td>2</td>
<td>1,093</td>
<td>2,207</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>37</td>
<td>-440</td>
<td>-520</td>
<td>452</td>
<td>25</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>2,474</td>
<td>-999</td>
<td></td>
<td>506</td>
<td>10</td>
<td>946</td>
<td>162</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>516</td>
<td>1,034</td>
<td>1,058</td>
<td>30</td>
<td>356</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>2,143</td>
<td>-992</td>
<td></td>
<td>1,574</td>
<td>116</td>
<td>910</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>327</td>
<td>1,109</td>
<td></td>
<td>533</td>
<td>108</td>
<td>891</td>
<td>537</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>186</td>
<td>1,963</td>
<td>137</td>
<td>336</td>
<td>130</td>
<td>1,024</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>230</td>
<td>-529</td>
<td>-341</td>
<td>590</td>
<td>230</td>
<td>1,013</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>351</td>
<td>2,403</td>
<td>42</td>
<td>1,040</td>
<td>82</td>
<td>941</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>1,074</td>
<td>118</td>
<td>-720</td>
<td>875</td>
<td>20</td>
<td>1,021</td>
<td>100</td>
<td>1,360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>-300</td>
<td></td>
<td>30</td>
<td>786</td>
<td>174</td>
<td>1,367</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en el documento "Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles Más Limpios" (SENER, 2016)
Los planes de expansión del país muestran un fuerte impulso a la generación eléctrica con el uso del gas natural, adicionándose un total de 19,261 MW de esta tecnología durante el período de proyección (ver tabla 6.10). De la misma manera se observa también un gran incremento en la capacidad instalada de ERNC, especialmente la eólica, seguida por biomasa, solar y geotérmica.

En cuanto a fuentes fósiles, se observa una clara tendencia a la reducción de la participación del diésel-fuel, con la salida de operación de 12,408 MW de capacidad instalada de esta tecnología, en su mayoría de plantas que han cumplido su ciclo de vida útil. Así mismo, para el caso del Carbón Mineral, a pesar de tener una adición de capacidad de 507 MW entre el año 2016 y 2019, al final del periodo de análisis, observamos un retiro de 1.400 MW entre los años 2029 y 2030, lo que resulta en una reducción de capacidad global de 893 MW.

Tabla 6.11. Proyección de la capacidad instalada en México, escenario EPA (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>12,028</td>
<td>12,211</td>
<td>13,081</td>
<td>13,848</td>
</tr>
<tr>
<td>Gas Natural</td>
<td>22,658</td>
<td>32,539</td>
<td>35,940</td>
<td>41,919</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>10,353</td>
<td>3,513</td>
<td>244</td>
<td>200</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>5,378</td>
<td>5,885</td>
<td>5,885</td>
<td>4,485</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,347</td>
<td>3,720</td>
<td>6,279</td>
<td>9,110</td>
</tr>
<tr>
<td>Geotermia</td>
<td>874</td>
<td>854</td>
<td>1,183</td>
<td>1,685</td>
</tr>
<tr>
<td>Eólica</td>
<td>699</td>
<td>6,249</td>
<td>9,800</td>
<td>14,587</td>
</tr>
<tr>
<td>Solar</td>
<td>6</td>
<td>5,446</td>
<td>6,600</td>
<td>7,206</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1,5</td>
<td>1,5</td>
<td>1,51</td>
<td>4,231</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,853</td>
<td>71,927</td>
<td>80,522</td>
<td>97,271</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en el documento "Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles Más Limpios" (SENER, 2016)

La prioridad de despacho utilizada en la simulación de la generación eléctrica, se aprecia en la Tabla 6.12.

Tabla 6.12. Prioridad de despacho considerada para México, escenario EPA

<table>
<thead>
<tr>
<th>Orden de despacho</th>
<th>Tecnología</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nuclear</td>
</tr>
<tr>
<td>2</td>
<td>Geotérmica</td>
</tr>
<tr>
<td>3</td>
<td>Hidroeléctrica</td>
</tr>
<tr>
<td>4</td>
<td>Eólica</td>
</tr>
<tr>
<td>5</td>
<td>Solar</td>
</tr>
<tr>
<td>6</td>
<td>Biomasa</td>
</tr>
<tr>
<td>7</td>
<td>Carbón mineral</td>
</tr>
<tr>
<td>8</td>
<td>Gas natural</td>
</tr>
<tr>
<td>9</td>
<td>Diesel-Fuel</td>
</tr>
<tr>
<td>10</td>
<td>Importación</td>
</tr>
</tbody>
</table>

Tabla 6.13. Proyección de la generación de electricidad en México, escenario EPA (GWh)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>30,955</td>
<td>42,787</td>
<td>45,836</td>
<td>48,523</td>
</tr>
<tr>
<td>Gas natural</td>
<td>167,842</td>
<td>217,287</td>
<td>250,361</td>
<td>279,009</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>42,099</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>33,741</td>
<td>27,118</td>
<td>37,118</td>
<td>28,288</td>
</tr>
<tr>
<td>Biomasa</td>
<td>9,503</td>
<td>26,396</td>
<td>44,553</td>
<td>64,641</td>
</tr>
<tr>
<td>Geotermia</td>
<td>6,191</td>
<td>6,060</td>
<td>8,394</td>
<td>11,956</td>
</tr>
<tr>
<td>Eólica</td>
<td>8,667</td>
<td>21,897</td>
<td>34,340</td>
<td>51,113</td>
</tr>
<tr>
<td>Solar</td>
<td>93</td>
<td>9,541</td>
<td>11,563</td>
<td>12,625</td>
</tr>
<tr>
<td>Nuclear</td>
<td>11,453</td>
<td>11,508</td>
<td>11,508</td>
<td>32,245</td>
</tr>
<tr>
<td>TOTAL</td>
<td>310,544</td>
<td>372,594</td>
<td>443,673</td>
<td>528,401</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Como se puede observar en la Figura 6.15, México tiene la capacidad de generación suficiente para autoabastecer su demanda interna de energía (consumo final + consumo propio + pérdidas), e incluso se advierte una ligera sobre oferta, la cual refleja la capacidad de exportación de México hacia sus países vecinos, especialmente de la subregión de América Central como Belice y Guatemala.

Por otra parte, en la Figura 6.16, se puede apreciar la evolución de la matriz de generación eléctrica mexicana en el período de proyección, donde se destaca la sustitución de la tecnología termoeléctrica diésel-fuel, por la mayor penetración de ERNC, como eólica, geotérmica y solar. También vale la pena resaltar que México le apuesta a la expansión de su parque termonuclear, para los últimos años del período de proyección, lo que se refleja en el incremento en la participación porcentual de esta tecnología en la matriz de producción eléctrica.
6.3.3 Proyección de la oferta total de energía

Tabla 6.14. Proyección de la oferta total energía en México, escenario EPA (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>580</td>
<td>635</td>
<td>701</td>
<td>778</td>
<td>2,0 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>566</td>
<td>658</td>
<td>769</td>
<td>905</td>
<td>3,2 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>109</td>
<td>126</td>
<td>147</td>
<td>171</td>
<td>3,1 %</td>
</tr>
<tr>
<td>Nuclear</td>
<td>21</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>3,8 %</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>15</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>3,8 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>69</td>
<td>72</td>
<td>77</td>
<td>85</td>
<td>1,4 %</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>23</td>
<td>34</td>
<td>41</td>
<td>50</td>
<td>5,3 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,382</td>
<td>1,569</td>
<td>1,788</td>
<td>2,052</td>
<td>2,7 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 6.17. Proyección de la oferta total de energía en México, escenario EPA

Fuente: Resultados de la simulación
En cuanto a la evolución de la oferta total de energía, presentada en la Tabla 6.14 y la Figura 6.17, se observa la mayor penetración del gas natural a lo largo del periodo de proyección, consolidándose como la fuente de energía predominante en la matriz de oferta total de energía de México. Las ERNC, específicamente la energía eólica, la energía solar y la geotermia, presentan un avance importantísimo en la oferta primaria de energía gracias a su incremento de participación en la generación eléctrica.

6.4 América Central

6.4.1 Proyección del consumo final de energía

Tabla 6.15. Proyección del consumo final de energía en América Central, Escenario EPA (Mtep)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>98</td>
<td>109</td>
<td>122</td>
<td>137</td>
<td>2,3 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-0,9 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>77</td>
<td>87</td>
<td>98</td>
<td>110</td>
<td>2,4 %</td>
</tr>
<tr>
<td>Electricidad</td>
<td>27</td>
<td>32</td>
<td>36</td>
<td>42</td>
<td>2,9 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>205</td>
<td>230</td>
<td>259</td>
<td>292</td>
<td>2,4 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 6.19. Proyección del consumo final de energía en América Central, Escenario EPA

Figura 6.20. Evolución de la matriz de consumo final de energía en América Central, Escenario EPA

Todavía en el escenario EPA, la matriz de consumo final de la subregión de América Central, sigue dominada por el consumo de petrolíferos y biomasa durante todo el período de proyección, sin embargo, la electricidad gana terreno al ser la fuente con mayor tasa de crecimiento promedio anual como se observa en la Tabla 6.15.

Tabla 6.16. Proyección del consumo final de electricidad por país (GWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Belice</td>
<td>599</td>
<td>725</td>
<td>871</td>
<td>1,040</td>
<td>599</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>9,359</td>
<td>10,368</td>
<td>11,546</td>
<td>12,922</td>
<td>9,359</td>
</tr>
<tr>
<td>El Salvador</td>
<td>5,725</td>
<td>6,130</td>
<td>6,703</td>
<td>7,513</td>
<td>5,725</td>
</tr>
<tr>
<td>Guatemala</td>
<td>9,114</td>
<td>10,362</td>
<td>11,492</td>
<td>13,101</td>
<td>9,114</td>
</tr>
<tr>
<td>Honduras</td>
<td>7,753</td>
<td>9,224</td>
<td>10,884</td>
<td>12,744</td>
<td>7,753</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>3,049</td>
<td>3,807</td>
<td>4,755</td>
<td>5,942</td>
<td>3,049</td>
</tr>
<tr>
<td>Panamá</td>
<td>8,482</td>
<td>10,272</td>
<td>12,351</td>
<td>14,753</td>
<td>8,482</td>
</tr>
<tr>
<td>TOTAL</td>
<td>44,082</td>
<td>50,888</td>
<td>58,803</td>
<td>68,014</td>
<td>44,082</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países
Como se observa en la tabla 6.16 y la Figura 6.20, el consumo final de electricidad en la subregión de América Central, presenta para el escenario EPA un crecimiento promedio anual cercano al 3%, siendo Nicaragua, Panamá y Belice los países donde este consumo tiene el mayor crecimiento porcentual durante el período de estudio. También vale la pena destacar que mientras en el año base los 3 principales consumidores de electricidad son en orden de importancia, Costa Rica, Guatemala y Panamá, en el año 2030, Panamá se convertirá en el principal consumidor de electricidad, superando a Costa Rica y Guatemala. Esto se justifica dado que Panamá es el país cuya economía ha experimentado el crecimiento más acelerado en la región durante la última década [23].

6.4.2 Proyección de la generación eléctrica

Tabla 6.17. Cronogramas de instalación/retiro de capacidad instalada en América Central, Escenario EPA (MW)

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belice</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>País</td>
<td>Año</td>
<td>Hidro</td>
<td>Gas Natural</td>
<td>Diésel / Fuel</td>
<td>Carbón mineral</td>
<td>Biomasa</td>
<td>Geotérmica</td>
<td>Eólica</td>
<td>Solar</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Belice</td>
<td>2016</td>
<td>81</td>
<td>5</td>
<td>20</td>
<td>18</td>
<td>9</td>
<td>9</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>8</td>
<td>2020</td>
<td>2021</td>
<td>2022</td>
<td>2023</td>
<td>2024</td>
<td>2025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>2027</td>
<td>2028</td>
<td>2029</td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>379</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>35</td>
<td>80</td>
<td>34</td>
<td>210</td>
<td>2018</td>
<td>390</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>66</td>
<td>65</td>
<td>52</td>
<td>40</td>
<td>2020</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Salvador</td>
<td>2016</td>
<td>147</td>
<td>35</td>
<td>80</td>
<td>34</td>
<td>210</td>
<td>2018</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>157</td>
<td>66</td>
<td>65</td>
<td>52</td>
<td>40</td>
<td>2020</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>País</td>
<td>Año</td>
<td>Hidro</td>
<td>Gas</td>
<td>Diésel / Fuel</td>
<td>Carbón</td>
<td>Biomasa</td>
<td>Geotérmica</td>
<td>Eólica</td>
<td>Solar</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>--------------</td>
<td>-------</td>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Belice</td>
<td>2016</td>
<td>87</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>75</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>162</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>150</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>150</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>74</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>253</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>60</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>2016</td>
<td>58</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>75</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>162</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>150</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>150</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>74</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>253</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>60</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>2016</td>
<td>58</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>75</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>162</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>150</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>150</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>74</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>253</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>60</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Nicaragua</td>
<td>2016</td>
<td>58</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>75</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>162</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>100</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>150</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>150</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>74</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>253</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>140</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>60</td>
<td>10</td>
<td>15</td>
<td>0</td>
<td>50</td>
<td>30</td>
<td>101</td>
<td></td>
</tr>
</tbody>
</table>
Evaluación de compromisos en cambio climático en América Latina y el Caribe

La siguiente tabla muestra la instalación y retiro de capacidad instalada en América Central desde 2016 hasta 2030:

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belice</td>
<td>2016</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>2016</td>
<td>379</td>
<td>-201</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>28</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>60</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Salvador</td>
<td>2016</td>
<td>35</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>66</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>380</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>2016</td>
<td>58</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>75</td>
<td>15</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>162</td>
<td>50</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>2016</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>-147</td>
<td>55</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>-286</td>
<td>-20</td>
<td>-8</td>
<td>35</td>
<td>57</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>419</td>
<td>500</td>
<td>-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>-4</td>
<td>-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>-1</td>
<td>500</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>264</td>
<td>-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>144</td>
<td>-180</td>
<td>-43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicaragua</td>
<td>2016</td>
<td>140</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>35</td>
<td>33</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>29</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>40</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>150</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>30</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panamá</td>
<td>2016</td>
<td>437</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total América Central</td>
<td>2016</td>
<td>437</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países

Figura 6.22. Cronograma de instalación/retiro de capacidad instalada en Américas Central

![Gráfico de barras mostrando la capacidad instalada anual en MW para diferentes años.]
En cuanto a la oferta de electricidad, los países centroamericanos, continuarán expandiendo su parque generador hidroeléctrico, complementándolo con aprovechamientos de ERNC como biomasa, geotermia, eólica y solar (ver tabla 6.17). A partir del año 2019, comienzan a aparecer instalaciones de centrales a gas natural, extendiéndose su implementación durante toda la próxima década (2020-2030). Los países que planean hacer uso de esta fuente son El Salvador, Honduras, Nicaragua y Panamá. Los proyectos de gas natural se refieren principalmente a centrales de ciclo combinado, cuyo insumo será gas importado en forma de GNL. Respecto a las demás tecnologías de generación con combustibles fósiles como carbón mineral y diésel-fuel, más bien predominan los retiros de capacidad. Entre las tecnologías de ERNC, a ser adicionadas al sistema de producción eléctrica de la subregión, se destaca la energía solar, en países como Guatemala, El Salvador, Honduras, Nicaragua y Panamá.

El recurso eólico, presenta la mayor expansión en Nicaragua, Costa Rica, Honduras y Panamá, la biomasa en Nicaragua, El Salvador y Belice, mientras que la Geotermia en Costa Rica y Nicaragua.

Tabla 6.18. Proyección de la capacidad instalada en América Central, escenario EPA (MW)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>6,122</td>
<td>7,447</td>
<td>8,677</td>
<td>10,379</td>
</tr>
<tr>
<td>Gas natural</td>
<td>0</td>
<td>300</td>
<td>2,080</td>
<td>2,980</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>3,436</td>
<td>2,724</td>
<td>2,807</td>
<td>2,502</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>482</td>
<td>551</td>
<td>551</td>
<td>461</td>
</tr>
<tr>
<td>Biomasa</td>
<td>667</td>
<td>756</td>
<td>768</td>
<td>812</td>
</tr>
<tr>
<td>Geotermia</td>
<td>610</td>
<td>700</td>
<td>820</td>
<td>950</td>
</tr>
<tr>
<td>Eólica</td>
<td>773</td>
<td>1,073</td>
<td>1,073</td>
<td>1,258</td>
</tr>
<tr>
<td>Solar</td>
<td>804</td>
<td>1,434</td>
<td>1,704</td>
<td>1,770</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12,894</td>
<td>14,985</td>
<td>18,479</td>
<td>21,111</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación en base a los cronogramas de instalación/retiro

Figura 6.23. Proyección de la capacidad instalada en América Central, escenario EPA

Fuente: Resultados de la simulación en base a los cronogramas de instalación/retiro
Con los cronogramas de instalación retiro considerados para la subregión centroamericana, la capacidad total de generación eléctrica se incrementa en un 64% durante el periodo de proyección, siendo oportuno destacar que la tecnología con gas natural, de tener participación nula en el año base, pasa a ser la segunda tecnología más importante en el año 2030, luego de la hidroeléctrica, aportando con un 14% de la capacidad instalada total en ese año (figura 6.23).

En la tabla 6.19, se puede observar el orden de prioridad de despacho, utilizado para el cálculo de la generación eléctrica por tecnología, el cual responde a criterios técnico-económicos.

Tabla 6.19. Prioridad de despacho de las tecnologías de generación eléctrica en América Central

<table>
<thead>
<tr>
<th>Orden de despacho</th>
<th>Tecnología</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geotérmica</td>
</tr>
<tr>
<td>2</td>
<td>Hidroeléctrica</td>
</tr>
<tr>
<td>3</td>
<td>Eólica</td>
</tr>
<tr>
<td>4</td>
<td>Solar</td>
</tr>
<tr>
<td>5</td>
<td>Biomasa</td>
</tr>
<tr>
<td>6</td>
<td>Carbón mineral</td>
</tr>
<tr>
<td>7</td>
<td>Gas natural</td>
</tr>
<tr>
<td>8</td>
<td>Diésel-Fuel</td>
</tr>
<tr>
<td>9</td>
<td>Importación</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 6.20. Proyección de la generación de electricidad en América Central, escenario EPA (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>25,195</td>
<td>32,616</td>
<td>38,005</td>
<td>45,460</td>
</tr>
<tr>
<td>Gas natural</td>
<td>0</td>
<td>2,102</td>
<td>12,961</td>
<td>15,212</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>11,004</td>
<td>8,258</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>5,446</td>
<td>3,860</td>
<td>3,860</td>
<td>3,229</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,810</td>
<td>2,054</td>
<td>2,084</td>
<td>2,205</td>
</tr>
<tr>
<td>Geotermia</td>
<td>5,670</td>
<td>5,519</td>
<td>6,465</td>
<td>7,490</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,291</td>
<td>3,760</td>
<td>3,760</td>
<td>4,408</td>
</tr>
<tr>
<td>Solar</td>
<td>1,408</td>
<td>2,513</td>
<td>2,985</td>
<td>3,100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51,824</td>
<td>60,682</td>
<td>70,12</td>
<td>81,104</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 6.24. Proyección de la generación eléctrica en América Central, escenario EPA

Se puede observar que América Central como subregión es autosuficiente en la producción de electricidad durante todo el período de estudio. Si bien en el año base existe importación de electricidad de Belice proveniente de México, en el período de proyección esa importación desaparece, puesto que dicha energía podría ser perfectamente suministrada por países integrantes de la subregión, asumiendo que existieran las capacidades de transmisión necesarias. Cabe anotar que en la simulación no se consideró una eventual importación de electricidad proveniente de Colombia, a través de una factible futura interconexión entre ese país sudamericano y Panamá.

Figura 6.25. Evolución de la matriz de generación eléctrica en América Central, escenario EPA

Acorde a la evolución de la capacidad instalada, se puede observar en los gráficos de la Figura 6.25, que el gas natural se convierte en el año 2030 en la segunda fuente en importancia en la matriz de generación eléctrica de la subregión centroamericana, desplazando a los petrolíferos, mientras que fuentes renovables, como la hidroenergía, la eólica y la solar, incrementan su participación porcentual en dicha matriz.
6.4.3 Proyección de la oferta total de energía

Tabla 6.21. Proyección de la oferta total energía en América Central, escenario EPA (Mbep)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>118</td>
<td>125</td>
<td>123</td>
<td>138</td>
<td>1,0 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>0,01</td>
<td>3</td>
<td>20</td>
<td>24</td>
<td>73,1 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>-2,8 %</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>29</td>
<td>3,8 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>82</td>
<td>93</td>
<td>104</td>
<td>117</td>
<td>2,4 %</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>2,8 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>243</td>
<td>267</td>
<td>299</td>
<td>336</td>
<td>2,2 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 6.26. Proyección de la oferta total de energía en América Central, escenario EPA

Fuente: Resultados de la simulación
La evolución de la oferta total de energía que se presenta en la Figura 6.27, muestra que los petrolíferos y la biomasa siguen predominando en el horizonte de proyección, sin embargo, el gas natural, la hidroenergía y otras renovables (geotermia, eólica y solar) desplazan una parte de los petrolíferos y el carbón mineral.

6.5 Subregión Andina

6.5.1 Proyección del consumo final de energía

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>447</td>
<td>537</td>
<td>652</td>
<td>800</td>
<td>4,0 %</td>
</tr>
<tr>
<td>Gas natural</td>
<td>134</td>
<td>133</td>
<td>135</td>
<td>140</td>
<td>0,3 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>29</td>
<td>36</td>
<td>44</td>
<td>54</td>
<td>4,1 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>60</td>
<td>64</td>
<td>71</td>
<td>79</td>
<td>1,9 %</td>
</tr>
<tr>
<td>Electricidad</td>
<td>133</td>
<td>159</td>
<td>191</td>
<td>231</td>
<td>3,7 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>803</td>
<td>929</td>
<td>1,093</td>
<td>1,304</td>
<td>3,3 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La evolución de la matriz de consumo final en el escenario EPA, es muy similar al del escenario tendencial (BAU), donde los petrolíferos y la electricidad, presentan tasas altas de crecimiento promedio anual, que les permite ganar mayor participación porcentual en dicha matriz, a costa de una reducción en la participación del gas natural y la biomasa.

Tabla 6.23. Proyección del consumo final de electricidad por país (GWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolivia</td>
<td>5,953</td>
<td>8,510</td>
<td>11,169</td>
<td>14,927</td>
<td>6.3 %</td>
</tr>
<tr>
<td>Colombia</td>
<td>48,697</td>
<td>55,562</td>
<td>62,566</td>
<td>69,223</td>
<td>2.4 %</td>
</tr>
<tr>
<td>Ecuador</td>
<td>13,815</td>
<td>16,172</td>
<td>19,248</td>
<td>22,655</td>
<td>3.4 %</td>
</tr>
<tr>
<td>Perú</td>
<td>31,910</td>
<td>41,668</td>
<td>47,524</td>
<td>58,123</td>
<td>4.1 %</td>
</tr>
<tr>
<td>Venezuela</td>
<td>114,716</td>
<td>134,622</td>
<td>167,874</td>
<td>208,550</td>
<td>4.1 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>215,091</td>
<td>256,534</td>
<td>308,383</td>
<td>373,478</td>
<td>3.7 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países
El principal consumidor de electricidad en la Subregión Andina es Venezuela, debido a su gran industria petrolera, sin embargo, el país donde este consumo crece más aceleradamente es Bolivia, gracias a su rápido crecimiento económico.

6.5.2 Proyección de la generación eléctrica

Tabla 6.24. Cronogramas de instalación/retiro de capacidad instalada (MW) en la Subregión Andina
<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Edilca</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colombia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td>-14</td>
<td>62</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>100</td>
<td></td>
<td></td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>600</td>
<td></td>
<td></td>
<td>90</td>
<td>171</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>900</td>
<td>124</td>
<td></td>
<td>71</td>
<td>69</td>
<td>45</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td>709</td>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>600</td>
<td>327</td>
<td></td>
<td></td>
<td>95</td>
<td>100</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>1000</td>
<td>74</td>
<td>200</td>
<td>104</td>
<td>28</td>
<td>23</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>313</td>
<td>198</td>
<td>100</td>
<td>26</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>581</td>
<td>200</td>
<td>104</td>
<td>28</td>
<td>23</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td>47</td>
<td>21</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>750</td>
<td>-181</td>
<td>471</td>
<td>2</td>
<td>9</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>750</td>
<td>150</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td>-342</td>
<td>-467</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>173</td>
<td>245</td>
<td></td>
<td></td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td>102</td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>100</td>
<td>-334</td>
<td>15</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>1000</td>
<td>200</td>
<td>7</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td>223</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perú</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>1842</td>
<td>1200</td>
<td></td>
<td>246</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>300</td>
<td>113</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>1200</td>
<td>383</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>298</td>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>300</td>
<td>113</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>1200</td>
<td>383</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>801</td>
<td>139</td>
<td>537</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>173</td>
<td>98</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>382</td>
<td>206</td>
<td>36</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>585</td>
<td>500</td>
<td>92</td>
<td>367</td>
<td>424</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>País</td>
<td>Año</td>
<td>Hidro</td>
<td>Gas Natural</td>
<td>Diésel / Fuel</td>
<td>Carbón mineral</td>
<td>Biomasa</td>
<td>Geotérmica</td>
<td>Eólica</td>
<td>Solar</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Colombia</td>
<td>2016</td>
<td>1,234</td>
<td>620</td>
<td>610</td>
<td>543</td>
<td>2</td>
<td>0</td>
<td>95</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>1,447</td>
<td>373</td>
<td>98</td>
<td>143</td>
<td>81</td>
<td>51</td>
<td>100</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>3,124</td>
<td>1,458</td>
<td>36</td>
<td>144</td>
<td>0</td>
<td>0</td>
<td>282</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>1,688</td>
<td>1,138</td>
<td>-375</td>
<td>243</td>
<td>91</td>
<td>0</td>
<td>523</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>808</td>
<td>173</td>
<td>245</td>
<td>265</td>
<td>0</td>
<td>0</td>
<td>709</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>947</td>
<td>72</td>
<td>102</td>
<td>327</td>
<td>0</td>
<td>0</td>
<td>187</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>2,598</td>
<td>497</td>
<td>-334</td>
<td>74</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>1,613</td>
<td>637</td>
<td>598</td>
<td>100</td>
<td>46</td>
<td>3</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>1,461</td>
<td>363</td>
<td>623</td>
<td>104</td>
<td>48</td>
<td>3</td>
<td>53</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>1,810</td>
<td>363</td>
<td>623</td>
<td>104</td>
<td>3</td>
<td>3</td>
<td>53</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>2,190</td>
<td>456</td>
<td>281</td>
<td>47</td>
<td>21</td>
<td>1</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>1,844</td>
<td>423</td>
<td>661</td>
<td>111</td>
<td>50</td>
<td>2</td>
<td>56</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>1,921</td>
<td>453</td>
<td>689</td>
<td>115</td>
<td>53</td>
<td>3</td>
<td>58</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>1,934</td>
<td>0</td>
<td>-181</td>
<td>1,483</td>
<td>0</td>
<td>0</td>
<td>1,569</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2,104</td>
<td>1,051</td>
<td>41</td>
<td>1,299</td>
<td>0</td>
<td>4</td>
<td>79</td>
<td>18</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países

Debido a que no todos los países de la Subregión Andina cubren en sus planes de expansión del sector eléctrico, todos los años del período de estudio, se procedió a ajustar y extender el cronograma subregional de acuerdo a las tendencias detectadas en los planes disponibles, quedando el cronograma subregional, como se muestra en la tabla 6.25.

Tabla 6.25. Cronograma ajustado de instalación/retiro de capacidad instalada (MW) en la Subregión Andina

<table>
<thead>
<tr>
<th>Región</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subregión Andina</td>
<td>2016</td>
<td>1,234</td>
<td>620</td>
<td>610</td>
<td>543</td>
<td>2</td>
<td>0</td>
<td>95</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>1,447</td>
<td>373</td>
<td>98</td>
<td>143</td>
<td>81</td>
<td>51</td>
<td>100</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>3,124</td>
<td>1,458</td>
<td>36</td>
<td>144</td>
<td>0</td>
<td>0</td>
<td>282</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>1,688</td>
<td>1,138</td>
<td>-375</td>
<td>243</td>
<td>91</td>
<td>0</td>
<td>523</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>808</td>
<td>173</td>
<td>245</td>
<td>265</td>
<td>0</td>
<td>0</td>
<td>709</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>947</td>
<td>72</td>
<td>102</td>
<td>327</td>
<td>0</td>
<td>0</td>
<td>187</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>2,598</td>
<td>497</td>
<td>-334</td>
<td>74</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>1,613</td>
<td>637</td>
<td>598</td>
<td>100</td>
<td>46</td>
<td>3</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>1,461</td>
<td>363</td>
<td>623</td>
<td>104</td>
<td>48</td>
<td>3</td>
<td>53</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>1,810</td>
<td>363</td>
<td>623</td>
<td>104</td>
<td>3</td>
<td>3</td>
<td>53</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>2,190</td>
<td>456</td>
<td>281</td>
<td>47</td>
<td>21</td>
<td>1</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>1,844</td>
<td>423</td>
<td>661</td>
<td>111</td>
<td>50</td>
<td>2</td>
<td>56</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>1,921</td>
<td>453</td>
<td>689</td>
<td>115</td>
<td>53</td>
<td>3</td>
<td>58</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>1,934</td>
<td>0</td>
<td>-181</td>
<td>1,483</td>
<td>0</td>
<td>0</td>
<td>1,569</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2,104</td>
<td>1,051</td>
<td>41</td>
<td>1,299</td>
<td>0</td>
<td>4</td>
<td>79</td>
<td>18</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países
Figura 6.31. Cronograma de instalación/retiro de capacidad instalada en la Subregión Andina

![Cronograma de instalación/retiro de capacidad instalada en la Subregión Andina](image)

Fuente: Elaboración propia con base en planes de expansión del sector eléctrico de los países

Tabla 6.26. Proyección de la capacidad instalada en la Subregión Andina, escenario EPA (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>28,019</td>
<td>36,320</td>
<td>45,350</td>
<td>55,120</td>
</tr>
<tr>
<td>Gas natural</td>
<td>11,089</td>
<td>14,850</td>
<td>16,876</td>
<td>20,059</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>13,041</td>
<td>13,655</td>
<td>14,925</td>
<td>15,946</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>992</td>
<td>2,330</td>
<td>2,983</td>
<td>6,021</td>
</tr>
<tr>
<td>Biomasa</td>
<td>984</td>
<td>1,258</td>
<td>1,407</td>
<td>1,646</td>
</tr>
<tr>
<td>Geotermia</td>
<td>0</td>
<td>51</td>
<td>180</td>
<td>187</td>
</tr>
<tr>
<td>Eólica</td>
<td>429</td>
<td>2,139</td>
<td>2,490</td>
<td>4,356</td>
</tr>
<tr>
<td>Solar</td>
<td>184</td>
<td>648</td>
<td>717</td>
<td>1,060</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,738</td>
<td>71,252</td>
<td>84,926</td>
<td>104,395</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 6.32. Proyección de la capacidad instalada en la Subregión Andina, escenario EPA

De acuerdo con los planes de expansión de los países que conforman la Subregión Andina, se observa que existe un gran interés por incrementar el uso del recurso hídrico, del cual esta subregión dispone de un alto potencial aun no aprovechado, localizándose el mayor incremento en Bolivia. Como segunda prioridad se observa un gran impulso al desarrollo de proyectos de generación con gas natural, siendo Bolivia, Perú y Venezuela los países que incluyen en mayor proporción dentro de sus planes de expansión.

En cuanto a la inclusión de ERNC, se observa que la energía eólica es el recurso que experimentará una mayor expansión, principalmente en Colombia, mientras que, la explotación del recurso solar en la subregión, tiene mayor presencia en Perú, Bolivia y Venezuela.

Respecto a la generación de electricidad con base en el uso de combustibles fósiles, solamente Venezuela y Colombia planifican un crecimiento en la explotación del carbón mineral y para el caso del diésel-fuel, se observa adición neta en los 5 países de la subregión. De manera general, la capacidad total de generación eléctrica para la subregión se incrementa en un 91% en el periodo de proyección, destacándose un incremento en la participación de fuentes de ERNC, principalmente la eólica, como se puede observar en la Figura 6.32.

Para efecto del cálculo de la generación eléctrica en la subregión Andina, se utiliza el esquema de prioridad de despacho por tecnología que se presenta en la tabla 6.27.
Tabla 6.27. Prioridad de despacho considerada para la Subregión Andina, escenario EPA (GWh)

<table>
<thead>
<tr>
<th>Orden de despacho</th>
<th>Tecnología</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nuclear</td>
</tr>
<tr>
<td>2</td>
<td>Geotérmica</td>
</tr>
<tr>
<td>3</td>
<td>Hidroeléctrica</td>
</tr>
<tr>
<td>4</td>
<td>Eólica</td>
</tr>
<tr>
<td>5</td>
<td>Solar</td>
</tr>
<tr>
<td>6</td>
<td>Biomasa</td>
</tr>
<tr>
<td>7</td>
<td>Carbón Mineral</td>
</tr>
<tr>
<td>8</td>
<td>Gas natural</td>
</tr>
<tr>
<td>9</td>
<td>Diésel-Fuel</td>
</tr>
<tr>
<td>10</td>
<td>Importación</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Tabla 6.28. Proyección de la generación de electricidad en la Subregión Andina, escenario EPA (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>152,886</td>
<td>198,181</td>
<td>247,449</td>
<td>300,761</td>
</tr>
<tr>
<td>Gas natural</td>
<td>77,709</td>
<td>104,069</td>
<td>118,265</td>
<td>125,129</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>39,985</td>
<td>6,26</td>
<td>3,676</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>6,953</td>
<td>16,331</td>
<td>20,901</td>
<td>42,194</td>
</tr>
<tr>
<td>Biomasa</td>
<td>2,844</td>
<td>3,636</td>
<td>4,066</td>
<td>4,758</td>
</tr>
<tr>
<td>Geotermia</td>
<td>0</td>
<td>404</td>
<td>1,418</td>
<td>1,474</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,503</td>
<td>7,493</td>
<td>8,723</td>
<td>15,265</td>
</tr>
<tr>
<td>Solar</td>
<td>323</td>
<td>1,136</td>
<td>1,257</td>
<td>1,858</td>
</tr>
<tr>
<td>TOTAL</td>
<td>282,203</td>
<td>337,511</td>
<td>405,755</td>
<td>491,438</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 6.33. Proyección de la generación eléctrica en la Subregión Andina, escenario EPA

Fuente: Resultados de la simulación
El alto potencial hidroeléctrico de la Subregión Andina, sumado a la expansión del uso de gas natural y las ERNC, garantizan la autosuficiencia en la producción de electricidad durante todo el periodo de estudio de la subregión. Es importante señalar que en la simulación no está considerada la eventual exportación de electricidad desde Colombia hacia Panamá a través de una factible futura interconexión entre estos dos países.

Como se puede apreciar en la Figura 6.34, al año 2030 el carbón mineral se convierte en la tercera fuente más importante de la matriz eléctrica de la subregión, desplazando al uso de petrolíferos (Diésel-fuel), mientras que la hidroenergía aumenta su participación en la matriz y el gas natural se mantiene con una participación similar a la del año 2015.

6.5.3 Proyección de la oferta total de energía

Tabla 6.29. Proyección de la oferta total energía en la Subregión Andina, escenario EPA (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>591</td>
<td>626</td>
<td>759</td>
<td>929</td>
<td>3.1%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>525</td>
<td>591</td>
<td>638</td>
<td>679</td>
<td>1.7%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>41</td>
<td>66</td>
<td>82</td>
<td>134</td>
<td>8.3%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>118</td>
<td>153</td>
<td>191</td>
<td>233</td>
<td>4.6%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>63</td>
<td>87</td>
<td>96</td>
<td>108</td>
<td>3.7%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>18.1%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.339</td>
<td>1.529</td>
<td>1.776</td>
<td>2.097</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 6.35. Proyección de la oferta total de energía en la Subregión Andina, escenario EPA

En cuanto a la oferta total de energía, como se puede observar en la Tabla 6.29 y Figura 6.35, tanto el petróleo y sus derivados como el gas natural, se mantienen como los energéticos predominantes en la subregión a lo largo de todo el periodo de proyección, mientras que se observa un crecimiento paulatino de la hidroenergía y de otras renovables, entre las que se incluye a la biomasa. La oferta total de energía en la Subregión Andina crece en un 57% con respecto al año 2015, a una tasa de incremento promedio anual de 3%.

Figura 6.36. Evolución de la matriz de oferta total de energía en la Subregión Andina, escenario EPA

Como se observa en la figura 6.36, la participación de los petrolíferos en la matriz se mantiene, mientras que la hidroenergía y el carbón mineral le ganan terreno al gas natural.
6.6 Cono Sur

6.6.1 Proyección del consumo final de energía

Tabla 6.30. Proyección del consumo final de energía en el Cono Sur (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>312</td>
<td>345</td>
<td>385</td>
<td>432</td>
<td>2,2 %</td>
</tr>
<tr>
<td>Gas Natural</td>
<td>163</td>
<td>184</td>
<td>208</td>
<td>236</td>
<td>2,5 %</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>-0,4 %</td>
</tr>
<tr>
<td>Biomasa</td>
<td>100</td>
<td>108</td>
<td>118</td>
<td>130</td>
<td>1,8 %</td>
</tr>
<tr>
<td>Electricidad</td>
<td>136</td>
<td>161</td>
<td>191</td>
<td>227</td>
<td>3,5 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>717</td>
<td>804</td>
<td>908</td>
<td>1030</td>
<td>2,4 %</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

La matriz de consumo final de energía del Cono Sur, durante el periodo de estudio, es dominada porcentualmente por el consumo de petróleo y derivados (ver figura 6.37). Sin embargo, la mayor penetración de electricidad y gas natural, desplazan ligeramente la participación de los petrolíferos. La electricidad gana participación porcentual al pasar del 19% en el año base al 22% en el año 2030.
La principal variación en la matriz de consumo final del Cono Sur en el escenario EPA, es la mayor penetración de la electricidad, reduciéndose la correspondiente a biomasa, carbón mineral y petrolíferos (ver figura 6.38).

Figura 6.38. Evolución de la matriz de consumo final de energía en el Cono Sur, Escenario EPA

![Figura 6.38. Evolución de la matriz de consumo final de energía en el Cono Sur, Escenario EPA](image)

Tabla 6.31. Proyección del consumo final de electricidad por país (GWh)

<table>
<thead>
<tr>
<th>País</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>131,400</td>
<td>150,987</td>
<td>176,167</td>
<td>208,012</td>
<td>3,1 %</td>
</tr>
<tr>
<td>Chile</td>
<td>64,189</td>
<td>73,134</td>
<td>84,245</td>
<td>97,610</td>
<td>2,8 %</td>
</tr>
<tr>
<td>Paraguay</td>
<td>13,433</td>
<td>24,282</td>
<td>35,188</td>
<td>46,337</td>
<td>8,6 %</td>
</tr>
<tr>
<td>Uruguay</td>
<td>10,894</td>
<td>11,967</td>
<td>13,051</td>
<td>14,377</td>
<td>1,9 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>219,915</td>
<td>260,370</td>
<td>308,650</td>
<td>366,336</td>
<td>3,5 %</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países

Figura 6.39. Proyección del consumo final de electricidad en el Cono Sur

![Figura 6.39. Proyección del consumo final de electricidad en el Cono Sur](image)

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países
Como se observa en la tabla 6.31, el crecimiento del consumo eléctrico más acelerado en esta subregión tiene lugar en Paraguay (8.6%), un valor elevado que se explica por el importante avance de la industrialización en el país durante los últimos años (ANDE, 2016). En la figura 6.39 se puede apreciar que dentro de la subregión los mayores consumidores de electricidad son Argentina y Chile.

6.6.2 Proyección de la generación eléctrica

Tabla 6.32. Cronogramas de instalación/retiro de capacidad instalada (MW) en el Cono Sur (Planes de expansión)

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eléctica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>290</td>
<td>644</td>
<td>216</td>
<td>1966</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eléctica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016</td>
<td>66</td>
<td>521</td>
<td>2093</td>
<td>472</td>
<td>48</td>
<td>442</td>
<td>1499</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>72</td>
<td>77</td>
<td>299</td>
<td></td>
<td>175</td>
<td>871</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>691</td>
<td>250</td>
<td>375</td>
<td></td>
<td></td>
<td>284</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>644</td>
<td></td>
<td></td>
<td></td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eléctica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016</td>
<td>21.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>76.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>12.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>188.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La oferta de electricidad en el Cono Sur se incrementará con nuevas centrales, que como se puede observar en la tabla 6.32, serán en su mayoría de tecnología hidráulica, eólica y de gas natural, implementadas principalmente en Argentina, Chile y Uruguay. También hay una importante adición de plantas de energía solar en Chile durante los primeros años del periodo de esta proyección. Argentina también instalará plantas de gas natural hasta el año 2025. Las plantas de generación fósil todavía se seguirán instalando durante el periodo de estudio.

Debido a que algunos países del Cono Sur, no presentan un cronograma de instalación/retiro que abarque el periodo de proyección del presente estudio, se procedió a extender el cronograma de la región consolidada, de acuerdo a las tendencias en la instalación de cada tecnología, como se observa en la Tabla 6.33. También cabe resaltar que el caso de Argentina, su plan de expansión proporcionaba capacidades acumuladas de cada tecnología al 2025, por lo que el incremento total de capacidad entre el año base y el 2025 se lo repartió equitativamente entre estos 10 años de proyección.

Tabla 6.32

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016</td>
<td>356</td>
<td>865</td>
<td>1888</td>
<td>688</td>
<td>0</td>
<td>48</td>
<td>1863</td>
<td>1569</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>362</td>
<td>961</td>
<td>299</td>
<td>216</td>
<td>10</td>
<td>0</td>
<td>2411</td>
<td>917</td>
<td>745</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>981</td>
<td>624</td>
<td>251</td>
<td>591</td>
<td>0</td>
<td>0</td>
<td>1566</td>
<td>332</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>999</td>
<td>824</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>706</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>312</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>100</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>453</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>309</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>459</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>498</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países.
Tabla 6.33. Cronogramas de instalación/retiro de capacidad instalada (MW) en el Cono Sur (extendido)

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>356</td>
<td>865</td>
<td>1888</td>
<td>688</td>
<td>0</td>
<td>48</td>
<td>1863</td>
<td>1569</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>362</td>
<td>903</td>
<td>299</td>
<td>216</td>
<td>0</td>
<td>50</td>
<td>1241</td>
<td>917</td>
<td>745</td>
</tr>
<tr>
<td>2018</td>
<td>981</td>
<td>824</td>
<td>251</td>
<td>591</td>
<td>0</td>
<td>0</td>
<td>1546</td>
<td>535</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>959</td>
<td>824</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>2020</td>
<td>706</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>2021</td>
<td>312</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>100</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>2022</td>
<td>453</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>309</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>2024</td>
<td>459</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>2025</td>
<td>498</td>
<td>644</td>
<td>0</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>1066</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>2026</td>
<td>700</td>
<td>800</td>
<td>100</td>
<td>216</td>
<td>100</td>
<td>100</td>
<td>1200</td>
<td>700</td>
<td>0</td>
</tr>
<tr>
<td>2027</td>
<td>800</td>
<td>800</td>
<td>100</td>
<td>216</td>
<td>100</td>
<td>100</td>
<td>1200</td>
<td>700</td>
<td>0</td>
</tr>
<tr>
<td>2028</td>
<td>800</td>
<td>800</td>
<td>100</td>
<td>216</td>
<td>100</td>
<td>100</td>
<td>1200</td>
<td>700</td>
<td>0</td>
</tr>
<tr>
<td>2029</td>
<td>800</td>
<td>800</td>
<td>100</td>
<td>216</td>
<td>100</td>
<td>100</td>
<td>1200</td>
<td>700</td>
<td>0</td>
</tr>
<tr>
<td>2030</td>
<td>800</td>
<td>800</td>
<td>100</td>
<td>216</td>
<td>100</td>
<td>100</td>
<td>1200</td>
<td>700</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países

Figura 6.40. Cronograma de instalación/retiro de capacidad instalada en el Cono Sur (Simulado)

Tabla 6.34. Proyección de la capacidad instalada en el Cono Sur, escenario EPA (MW)

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidroeléctrica</th>
<th>Gas natural</th>
<th>Diésel-Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotermia</th>
<th>Eólica</th>
<th>Solar</th>
<th>Nuclear</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>28,732</td>
<td>18,647</td>
<td>4,513</td>
<td>10,320</td>
<td>829</td>
<td>0</td>
<td>2,054</td>
<td>1,000</td>
<td>1,010</td>
<td>67,104</td>
</tr>
<tr>
<td>2020</td>
<td>32,096</td>
<td>22,706</td>
<td>6,951</td>
<td>12,248</td>
<td>839</td>
<td>48</td>
<td>8,855</td>
<td>4,113</td>
<td>1,751</td>
<td>89,611</td>
</tr>
<tr>
<td>2025</td>
<td>34,126</td>
<td>25,928</td>
<td>7,051</td>
<td>13,329</td>
<td>1,039</td>
<td>48</td>
<td>14,183</td>
<td>4,351</td>
<td>1,755</td>
<td>101,810</td>
</tr>
<tr>
<td>2030</td>
<td>38,026</td>
<td>29,928</td>
<td>7,551</td>
<td>14,410</td>
<td>1,539</td>
<td>48</td>
<td>20,783</td>
<td>7,851</td>
<td>1,755</td>
<td>122,391</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Entre el 2015 y el 2030, la capacidad de generación de la subregión del Cono Sur se incrementa en un 82%. Cabe destacar que la energía eólica que en el año 2030 será la tercera tecnología más importante después de la hidráulica y las térmicas a gas natural (ver Figura 6.41).

El orden de despacho de las tecnologías para el Cono Sur se detalla a continuación.

Tabla 6.35. Prioridad de despacho en el Cono Sur

<table>
<thead>
<tr>
<th>Orden de despacho</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nuclear</td>
</tr>
<tr>
<td>2</td>
<td>Geotermia</td>
</tr>
<tr>
<td>3</td>
<td>Hidroeléctrica</td>
</tr>
<tr>
<td>4</td>
<td>Eólica</td>
</tr>
<tr>
<td>5</td>
<td>Solar</td>
</tr>
<tr>
<td>6</td>
<td>Biomasa</td>
</tr>
<tr>
<td>7</td>
<td>Carbón mineral</td>
</tr>
<tr>
<td>8</td>
<td>Gas natural</td>
</tr>
<tr>
<td>9</td>
<td>Diésel-Fuel</td>
</tr>
<tr>
<td>10</td>
<td>Importación</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Tabla 6.36. Proyección de la generación de electricidad en el Cono Sur, escenario EPA (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>115,574</td>
<td>140,579</td>
<td>149,475</td>
<td>166,556</td>
</tr>
<tr>
<td>Gas natural</td>
<td>80,222</td>
<td>84,278</td>
<td>115,649</td>
<td>133,349</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>21,789</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>44,972</td>
<td>75,096</td>
<td>81,719</td>
<td>88,341</td>
</tr>
<tr>
<td>Biomasa</td>
<td>4,944</td>
<td>4,997</td>
<td>6,188</td>
<td>9,166</td>
</tr>
<tr>
<td>Geotermia</td>
<td>0</td>
<td>378</td>
<td>378</td>
<td>4,320</td>
</tr>
<tr>
<td>Eólica</td>
<td>6,112</td>
<td>31,032</td>
<td>49,709</td>
<td>72,835</td>
</tr>
<tr>
<td>Solar</td>
<td>3,799</td>
<td>10,809</td>
<td>11,440</td>
<td>20,638</td>
</tr>
<tr>
<td>Nuclear</td>
<td>7,081</td>
<td>12,299</td>
<td>12,299</td>
<td>12,299</td>
</tr>
<tr>
<td>TOTAL</td>
<td>284,493</td>
<td>359,469</td>
<td>426,856</td>
<td>507,505</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 6.42. Proyección de la generación eléctrica en el Cono Sur, escenario EPA

Fuente: Resultados de la simulación
Como se puede observar en la Figura 6.42, la subregión mejora su condición de exportadora neta de electricidad, pudiendo adicionar mayor cantidad de energía exportable al mercado externo natural de la subregión que lo constituye Brasil.

De acuerdo al cronograma de expansión simulado, la matriz de generación eléctrica del Cono Sur, evoluciona hacia una mayor participación de las ERNC como la biomasa, la eólica, la solar y la geotermia, que en conjunto llegan a representar un importante 21% de la generación total, en el año 2030, frente a un 5% del año base (Figura 6.43). Cabe anotar que el aporte en geotermia le correspondería a Chile, que es el primer país suramericano que ha iniciado ya la explotación de este recurso renovable.

6.6.3 Proyección de la oferta total de energía

Tabla 6.37. Proyección de la oferta total energía en el Cono Sur, escenario EPA (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>374</td>
<td>360</td>
<td>398</td>
<td>445</td>
<td>1.2%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>384</td>
<td>420</td>
<td>511</td>
<td>583</td>
<td>2.8%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>71</td>
<td>119</td>
<td>126</td>
<td>134</td>
<td>4.3%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>16</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>3.7%</td>
</tr>
<tr>
<td>Hidroenergia</td>
<td>76</td>
<td>85</td>
<td>86</td>
<td>92</td>
<td>1.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>124</td>
<td>134</td>
<td>149</td>
<td>173</td>
<td>2.2%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>6</td>
<td>27</td>
<td>39</td>
<td>67</td>
<td>17.3%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,052</td>
<td>1,172</td>
<td>1,337</td>
<td>1,521</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La evolución de la oferta total de energía, muestra la importancia del gas natural en la subregión superando inclusive al petróleo y derivados durante todo el período de estudio. La serie “Otras renovables” que agrupa a la energía eólica, geotérmica y solar, tiene la tasa de crecimiento promedio anual más alta (17.3%), y aunque su participación continúa siendo marginal respecto a la de las fuentes convencionales, experimenta un importante crecimiento al pasar de 1% en año base a 5% en el año 2030.

6.7 EL Caribe

6.7.1 Proyección del consumo final
Tabla 6.38. Proyección del consumo final de energía en El Caribe, escenario EPA (Mbep)

<table>
<thead>
<tr>
<th>Fuentes</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>115</td>
<td>0.1%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>85</td>
<td>94</td>
<td>103</td>
<td>114</td>
<td>2.0%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>3.0%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>0.6%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>28</td>
<td>34</td>
<td>40</td>
<td>48</td>
<td>3.6%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>266</td>
<td>281</td>
<td>300</td>
<td>322</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 6.46. Proyección del consumo final de energía en El Caribe, Escenario EPA

Figura 6.47. Evolución de la matriz de consumo final de energía en El Caribe, Escenario EPA
En la matriz de consumo final en El Caribe, la electricidad y el gas natural, ganan participación porcentual en la matriz de consumo final, ganándole terreno a los petrolíferos y a la biomasa, como se puede observar en la figura 6.47.

Tabla 6.39. Proyección del consumo final de electricidad por país (GWh)

<table>
<thead>
<tr>
<th>País</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbados</td>
<td>970</td>
<td>1,025</td>
<td>1,104</td>
<td>1,200</td>
<td>1.4%</td>
</tr>
<tr>
<td>Cuba</td>
<td>13,948</td>
<td>16,756</td>
<td>20,040</td>
<td>24,227</td>
<td>3.7%</td>
</tr>
<tr>
<td>Grenada</td>
<td>258</td>
<td>330</td>
<td>429</td>
<td>566</td>
<td>5.4%</td>
</tr>
<tr>
<td>Guyana</td>
<td>688</td>
<td>992</td>
<td>1,489</td>
<td>1,804</td>
<td>6.6%</td>
</tr>
<tr>
<td>Haití</td>
<td>1,356</td>
<td>1,682</td>
<td>2,027</td>
<td>2,402</td>
<td>3.9%</td>
</tr>
<tr>
<td>Jamaica</td>
<td>2,922</td>
<td>3,150</td>
<td>3,461</td>
<td>3,838</td>
<td>1.8%</td>
</tr>
<tr>
<td>República Dominicana</td>
<td>14,147</td>
<td>16,154</td>
<td>18,742</td>
<td>21,730</td>
<td>2.9%</td>
</tr>
<tr>
<td>Suriname</td>
<td>2,029</td>
<td>2,799</td>
<td>3,450</td>
<td>4,515</td>
<td>5.5%</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>9,403</td>
<td>11,401</td>
<td>14,090</td>
<td>17,576</td>
<td>4.3%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>45,722</td>
<td>54,289</td>
<td>64,832</td>
<td>77,857</td>
<td>3.6%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a los planes de expansión del sector eléctrico de los países

El crecimiento del consumo de electricidad en la subregión del Caribe, tiene un ritmo aproximado de 3.6% anual, el cual está determinado por la contribución principalmente de tres países: Cuba, República Dominicana y Trinidad y Tobago, que son los mayores consumidores de electricidad en la subregión, los cuales mantienen sus posiciones relativas durante todo el período de proyección (ver figura 6.48). Cabe desatarcar sin embargo que el crecimiento más acelerado en el consumo de electricidad ocurre en Guyana, Surinam y Granada, como se observa en la tabla 6.39.
6.7.2 Proyección de la generación eléctrica

En los cronogramas de expansión de la capacidad de generación eléctrica de la mayoría de los países de El Caribe, tiene todavía relevancia los proyectos térmicos convencionales a diésel-fuel. Sin embargo, República Dominicana y Trinidad y Tobago, apuestan por grandes proyectos de carbón mineral y gas natural, para sustentar el abastecimiento en el periodo de proyección. Tal es el caso de República Dominicana, donde el proyecto de generación eléctrica más importante en su cronograma, corresponde a la central carboeléctrica de Punta Catalina, que con sus dos fases programadas para entrar en operación en el 2018 y 2019, suma 832 MW adicionales a su parque generador. Esta central se abastecerá de carbón mineral importado desde Colombia. Trinidad y Tobago por su parte, planea instalar 1000 MW adicionales de centrales a gas natural durante el período de estudio. En cuanto a ERNC, las adiciones de capacidad más importantes en la subregión, corresponden a Biomasa, eólica y solar, destacándose Cuba por su mayor orientación hacia estas tecnologías (tabla 6.40).

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Bioma</th>
<th>Geotérmica</th>
<th>Edén</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbados</td>
<td>2016</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>-55</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>-22</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>2016</td>
<td>4</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>4</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>4</td>
<td>19%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>4</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>País</td>
<td>Año</td>
<td>Hidro</td>
<td>Gas Natural</td>
<td>Diésel / Fuel</td>
<td>Carbón mineral</td>
<td>Biomasa</td>
<td>Geotérmica</td>
<td>Edíca</td>
<td>Solar</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Barbados</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grenada</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guyana</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haití</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaica</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>País</td>
<td>Año</td>
<td>Hidro</td>
<td>Gas Natural</td>
<td>Diesel / Fuel</td>
<td>Carbón mineral</td>
<td>Biomasa</td>
<td>Geotérmica</td>
<td>Edífica</td>
<td>Solar</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Rep. Dominicana</td>
<td>2016</td>
<td>114</td>
<td>50</td>
<td>30</td>
<td>447</td>
<td>184</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Suriname</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinidad y Tobago</td>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td></td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Puesto que no todos los países aportaron con información en sus planes de expansión del sector eléctrico, suficiente para cubrir el crecimiento de la demanda subregional durante todo el período de estudio, se procedió a ajustar el cronograma de instalación de capacidad de la subregión, como se muestra en la tabla 6.41.

Tabla 6.41. Cronogramas de instalación/retiro de capacidad instalada de El Caribe ajustada (MW)

<table>
<thead>
<tr>
<th>País</th>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Caribe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>0</td>
<td>114</td>
<td></td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>4</td>
<td>300</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>4</td>
<td>300</td>
<td>186</td>
<td>447</td>
<td>115</td>
<td>0</td>
<td>0</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>385</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td>169</td>
<td>400</td>
<td>208</td>
<td>0</td>
<td>130</td>
<td>0</td>
<td>0</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>2022</td>
<td>4</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2023</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2024</td>
<td>4</td>
<td>0</td>
<td>221</td>
<td>0</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2025</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2026</td>
<td>4</td>
<td>0</td>
<td>296</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2027</td>
<td>254</td>
<td>300</td>
<td>416</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2028</td>
<td>100</td>
<td>0</td>
<td>300</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>100</td>
<td>300</td>
<td>300</td>
<td>200</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>100</td>
<td>0</td>
<td>717</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a los planes de expansión del sector eléctrico de los países

Figura 6.49. Cronograma de instalación/retiro de capacidad instalada en El Caribe

Fuente: elaboración propia en base a los planes de expansión del sector eléctrico de los países
Tabla 6.42. Proyección de la capacidad instalada en El Caribe, escenario EPA (MW)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>800</td>
<td>841</td>
<td>1,026</td>
<td>1,584</td>
</tr>
<tr>
<td>Gas natural</td>
<td>4,088</td>
<td>4,802</td>
<td>5,202</td>
<td>5,802</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>8,374</td>
<td>8,926</td>
<td>9,452</td>
<td>11,481</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>500</td>
<td>1,332</td>
<td>1,332</td>
<td>1,532</td>
</tr>
<tr>
<td>Biomasa</td>
<td>233</td>
<td>558</td>
<td>1,058</td>
<td>1,458</td>
</tr>
<tr>
<td>Eólica</td>
<td>114</td>
<td>1,042</td>
<td>1,328</td>
<td>1,578</td>
</tr>
<tr>
<td>Solar</td>
<td>60</td>
<td>458</td>
<td>708</td>
<td>997</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14,170</td>
<td>17,960</td>
<td>20,107</td>
<td>24,433</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación en base a los cronogramas de instalación/retiro

Figura 6.50. Proyección de la capacidad instalada en El Caribe, escenario EPA

De acuerdo a los cronogramas de instalación/retiro de centrales eléctricas planteados por los países de El Caribe, la capacidad de generación eléctrica en la subregión se incrementaría hasta el año 2030, en un 72% respecto al año base lo que representa alrededor de 10,263 MW adicionales. Cabe mencionar también, que mientras en el año base la ERNC participaban en la subregión con un modesto 3% de la capacidad total, esta participación alcanza el 17% en el año 2030.

Para el cálculo de la generación eléctrica de cada tecnología disponible, se utilizó la prioridad de despacho que se indica en la tabla 6.43. Aunque se suele mencionar, la posibilidad de proyectos de interconexión eléctrica mediante cables submarinos entre países insulares y países continentales, no se ha considerado en la prospectiva, capacidades de importación o exportación de electricidad para la subregión.
Tabla 6.43. Prioridad de despacho de las tecnologías de generación eléctrica en El Caribe

<table>
<thead>
<tr>
<th>Orden de despacho</th>
<th>Tecnología</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hidroeléctrica</td>
</tr>
<tr>
<td>2</td>
<td>Eólica</td>
</tr>
<tr>
<td>3</td>
<td>Solar</td>
</tr>
<tr>
<td>4</td>
<td>Biomasa</td>
</tr>
<tr>
<td>5</td>
<td>Carbón mineral</td>
</tr>
<tr>
<td>6</td>
<td>Gas natural</td>
</tr>
<tr>
<td>7</td>
<td>Diésel-Fuel</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 6.44. Proyección de la generación de electricidad en El Caribe, escenario EPA (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>2,398</td>
<td>3,684</td>
<td>4,494</td>
<td>6,938</td>
</tr>
<tr>
<td>Gas natural</td>
<td>22,039</td>
<td>33,655</td>
<td>36,458</td>
<td>40,663</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>25,674</td>
<td>11,307</td>
<td>15,514</td>
<td>19,163</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>2,696</td>
<td>8,169</td>
<td>8,169</td>
<td>9,395</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,573</td>
<td>3,763</td>
<td>7,132</td>
<td>9,828</td>
</tr>
<tr>
<td>Eólica</td>
<td>308</td>
<td>3,652</td>
<td>4,655</td>
<td>5,531</td>
</tr>
<tr>
<td>Solar</td>
<td>81</td>
<td>802</td>
<td>1,240</td>
<td>1,747</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,769</td>
<td>65,032</td>
<td>77,662</td>
<td>93,264</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 6.51. Proyección de la generación eléctrica en El Caribe, escenario EPA

Fuente: Resultados de la simulación
De la simulación realizada en el período de estudio, con base en la demanda de electricidad proyectada y a la disponibilidad de capacidad instalada para cada año, se obtiene la evolución de la generación eléctrica que se muestra en la figura 6.52. Como se puede observar, el gas natural gana relevancia en la matriz de generación, desplazando a los petrolíferos. El carbón mineral también adquiere mayor participación debido al proyecto de Punta Catalina en República Dominicana; y en cuanto a las energías renovables (incluida la hidroenergía), su participación evoluciona de un 8% en el año base hasta alcanzar un importante 25% en el año 2030, gracias al aporte de las nuevas centrales a biomasa, eólicas, solares e hidroeléctricas.

6.7.3 Proyección de la oferta total de energía

Tabla 6.45. Proyección de la oferta total energía en El Caribe, escenario EPA (Mbep)

<table>
<thead>
<tr>
<th>Fuentes</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>150</td>
<td>127</td>
<td>135</td>
<td>143</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>138</td>
<td>165</td>
<td>181</td>
<td>199</td>
<td>2.5%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>9</td>
<td>19</td>
<td>20</td>
<td>23</td>
<td>6.7%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>47</td>
<td>54</td>
<td>63</td>
<td>71</td>
<td>2.8%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>0.2</td>
<td>2.8</td>
<td>3.7</td>
<td>4.5</td>
<td>21.6%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>347</td>
<td>371</td>
<td>405</td>
<td>445</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 6.53. Proyección de la oferta total de energía en El Caribe, escenario EPA

Figura 6.54. Evolución de la matriz de oferta total de energía en El Caribe, escenario EPA

De forma muy similar a lo que ocurre con la matriz de generación eléctrica, en la evolución de la oferta total de energía para la subregión de El Caribe, se observa la sustitución parcial del uso de petróleo y sus derivados, por gas natural, carbón mineral y fuentes renovables, donde predomina la mayor oferta de biomasa. Respecto a la hidroenergía, esta fuente mantiene una participación muy marginal en la matriz de oferta energética durante todo el período de estudio.

6.8 América Latina y El Caribe (ALC)

6.8.1 Proyección del consumo final de energía

Tabla 6.46. Proyección del consumo final de energía en ALC, escenario EPA (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>2,261</td>
<td>2,554</td>
<td>2,916</td>
<td>3,360</td>
<td>2.7%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>590</td>
<td>649</td>
<td>721</td>
<td>808</td>
<td>2.1%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>174</td>
<td>196</td>
<td>223</td>
<td>255</td>
<td>2.6%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>767</td>
<td>832</td>
<td>916</td>
<td>1,022</td>
<td>1.9%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>784</td>
<td>932</td>
<td>1,110</td>
<td>1,324</td>
<td>3.6%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4,576</td>
<td>5,163</td>
<td>5,886</td>
<td>6,769</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 6.55. Proyección del consumo final de energía en ALC, escenario EPA

![Diagrama de barras](image1)

Fuente: Resultado de la simulación con SAME, escenario BAU

Figura 6.56. Evolución de la matriz de consumo final de energía en ALC, escenario EPA

![Diagrama de círculos](image2)

Fuente: Resultado de la simulación con SAME, escenario BAU

La evolución de la matriz de consumo final de ALC en el escenario EPA, es muy similar a la que ya se observó en el escenario BAU, pero con una menor penetración de electricidad (Figura 6.56).
Tabla 6.47. Proyección del consumo final de electricidad en ALC, escenario EPA (TWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>1,265</td>
<td>1,504</td>
<td>1,791</td>
<td>2,137</td>
<td>3.6%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

La tasa de crecimiento promedio anual del consumo de electricidad para ALC, en el escenario EPA, resulta ser dos décimas porcentuales menor que en el escenario BAU.

6.8.2 Proyección de la generación eléctrica

Tabla 6.48. Cronograma de instalación/retiro de capacidad instalada en ALC, Escenario EPA (MW)

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>5,996</td>
<td>5,025</td>
<td>-2,938</td>
<td>1,394</td>
<td>676</td>
<td>48</td>
<td>5,862</td>
<td>1,715</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>7,337</td>
<td>3,449</td>
<td>-2,789</td>
<td>414</td>
<td>1,359</td>
<td>51</td>
<td>4,679</td>
<td>2,226</td>
<td>745</td>
</tr>
<tr>
<td>2018</td>
<td>9,576</td>
<td>6,015</td>
<td>-1,169</td>
<td>1,212</td>
<td>1,056</td>
<td>45</td>
<td>6,104</td>
<td>4,286</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>5,250</td>
<td>4,227</td>
<td>-3,586</td>
<td>1,298</td>
<td>607</td>
<td>55</td>
<td>4,602</td>
<td>2,909</td>
<td>0</td>
</tr>
<tr>
<td>2020</td>
<td>2,072</td>
<td>3,355</td>
<td>-2,121</td>
<td>481</td>
<td>206</td>
<td>-30</td>
<td>4,053</td>
<td>2,549</td>
<td>0</td>
</tr>
<tr>
<td>2021</td>
<td>1,721</td>
<td>856</td>
<td>-10</td>
<td>543</td>
<td>1,282</td>
<td>133</td>
<td>3,723</td>
<td>1,306</td>
<td>0</td>
</tr>
<tr>
<td>2022</td>
<td>4,076</td>
<td>1,397</td>
<td>-1,158</td>
<td>290</td>
<td>683</td>
<td>71</td>
<td>3,872</td>
<td>1,405</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>2,886</td>
<td>3,815</td>
<td>-593</td>
<td>316</td>
<td>697</td>
<td>120</td>
<td>3,276</td>
<td>1,375</td>
<td>0</td>
</tr>
<tr>
<td>2024</td>
<td>2,769</td>
<td>3,551</td>
<td>-1,067</td>
<td>320</td>
<td>2,246</td>
<td>119</td>
<td>3,832</td>
<td>1,236</td>
<td>0</td>
</tr>
<tr>
<td>2025</td>
<td>4,022</td>
<td>3,293</td>
<td>-327</td>
<td>268</td>
<td>1,203</td>
<td>134</td>
<td>3,824</td>
<td>1,645</td>
<td>0</td>
</tr>
<tr>
<td>2026</td>
<td>4,729</td>
<td>3,749</td>
<td>1,049</td>
<td>237</td>
<td>1,194</td>
<td>233</td>
<td>4,176</td>
<td>1,918</td>
<td>1,425</td>
</tr>
<tr>
<td>2027</td>
<td>4,653</td>
<td>2,092</td>
<td>484</td>
<td>331</td>
<td>1,370</td>
<td>359</td>
<td>4,346</td>
<td>1,921</td>
<td>0</td>
</tr>
<tr>
<td>2028</td>
<td>4,185</td>
<td>3,203</td>
<td>261</td>
<td>1,699</td>
<td>1,820</td>
<td>182</td>
<td>5,800</td>
<td>2,124</td>
<td>0</td>
</tr>
<tr>
<td>2029</td>
<td>3,873</td>
<td>3,829</td>
<td>197</td>
<td>516</td>
<td>1,727</td>
<td>155</td>
<td>4,730</td>
<td>1,868</td>
<td>1,360</td>
</tr>
<tr>
<td>2030</td>
<td>4,286</td>
<td>2,351</td>
<td>46</td>
<td>872</td>
<td>1,462</td>
<td>210</td>
<td>4,441</td>
<td>1,974</td>
<td>1,361</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países
Como se observa en la tabla 6.48 y figura 6.58, las tecnologías de generación eléctrica que predominarán en el cronograma de instalación de nueva capacidad durante el período de estudio para ALC, serán las hidráulicas, las centrales a gas natural y las eólicas.

Tabla 6.49. Proyección de la capacidad instalada en ALC, escenario EPA (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>162,241</td>
<td>192,471</td>
<td>207,945</td>
<td>229,471</td>
</tr>
<tr>
<td>Gas natural</td>
<td>67,798</td>
<td>89,869</td>
<td>102,781</td>
<td>118,026</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>45,260</td>
<td>37,734</td>
<td>34,479</td>
<td>37,680</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>20,736</td>
<td>25,535</td>
<td>27,268</td>
<td>30,097</td>
</tr>
<tr>
<td>Biomasa</td>
<td>19,834</td>
<td>23,738</td>
<td>29,948</td>
<td>36,930</td>
</tr>
<tr>
<td>Geotermia</td>
<td>1,484</td>
<td>1,653</td>
<td>2,231</td>
<td>3,370</td>
</tr>
<tr>
<td>Eólica</td>
<td>13,099</td>
<td>38,399</td>
<td>56,936</td>
<td>80,429</td>
</tr>
<tr>
<td>Solar</td>
<td>2,091</td>
<td>15,776</td>
<td>22,757</td>
<td>32,561</td>
</tr>
<tr>
<td>Nuclear</td>
<td>4,510</td>
<td>5,255</td>
<td>5,255</td>
<td>9,381</td>
</tr>
<tr>
<td>TOTAL</td>
<td>337,052</td>
<td>430,430</td>
<td>489,599</td>
<td>577,946</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a planes de expansión del sector eléctrico de los países
Como muestran la tabla 6.49 y la figura 6.59, la capacidad instalada de generación eléctrica en ALC, mantendrá una mayor fracción hidráulica durante todo el período de estudio. Sin embargo, es evidente el incremento en la importancia del gas natural y de las ERNC como la eólica, la biomasa y la solar.

Tabla 6.50. Proyección de la generación de electricidad en ALC, escenario EPA (GWh)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>686,983</td>
<td>889,565</td>
<td>985,191</td>
<td>1,149,101</td>
</tr>
<tr>
<td>Gas natural</td>
<td>427,355</td>
<td>500,734</td>
<td>632,842</td>
<td>699,272</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>178,285</td>
<td>25,825</td>
<td>19,189</td>
<td>19,163</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>112,917</td>
<td>160,462</td>
<td>171,655</td>
<td>191,335</td>
</tr>
<tr>
<td>Biomasa</td>
<td>69,732</td>
<td>92,495</td>
<td>124,354</td>
<td>160,159</td>
</tr>
<tr>
<td>Geotermia</td>
<td>11,861</td>
<td>12,361</td>
<td>16,656</td>
<td>25,240</td>
</tr>
<tr>
<td>Eólica</td>
<td>39,521</td>
<td>134,556</td>
<td>211,808</td>
<td>298,421</td>
</tr>
<tr>
<td>Solar</td>
<td>5,763</td>
<td>32,530</td>
<td>46,726</td>
<td>68,720</td>
</tr>
<tr>
<td>Nuclear</td>
<td>33,277</td>
<td>38,551</td>
<td>38,551</td>
<td>69,697</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,565,695</td>
<td>1,887,079</td>
<td>2,246,971</td>
<td>2,681,108</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La generación eléctrica en ALC, continuará siendo dependiente principalmente de la hidroenergía y el gas natural, sin embargo, el aspecto más relevante en la evolución de la matriz, es el evidente incremento de participación de las ERNC, lo que contribuye a mejorar su índice de renovabilidad al pasar del 53% en el año base al 62% en el año 2030 (ver figura 6.61).
6.8.3 Proyección de la oferta total de energía

Tabla 6.51. Proyección de la oferta total energía en ALC, escenario EPA (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>2,634</td>
<td>3,006</td>
<td>3,462</td>
<td>4,050</td>
<td>2.9%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>1,895</td>
<td>2,080</td>
<td>2,465</td>
<td>2,811</td>
<td>2.7%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>369</td>
<td>463</td>
<td>517</td>
<td>582</td>
<td>3.1%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>64</td>
<td>80</td>
<td>85</td>
<td>111</td>
<td>3.7%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>471</td>
<td>587</td>
<td>649</td>
<td>763</td>
<td>3.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,041</td>
<td>1,131</td>
<td>1,264</td>
<td>1,430</td>
<td>2.1%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>57</td>
<td>127</td>
<td>183</td>
<td>254</td>
<td>10.4%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6,532</td>
<td>7,474</td>
<td>8,626</td>
<td>10,000</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 6.62. Proyección de la oferta total de energía en ALC, escenario EPA

Fuente: Resultados de la simulación
Figura 6.63. Evolución de la matriz de oferta total de energía en ALC, escenario EPA

La matriz de oferta total de energía de ALC, presenta durante todo el período de proyección predominio de los hidrocarburos. Aunque el índice de renovabilidad, no varía, la hidroenergía y otras fuentes renovables (eólica, solar y geotermia), ganan terreno frente a la biomasa (figura 6.63).
7. Análisis comparativo de las emisiones de CO$_2$e de los escenarios EPA y BAU, en relación con las metas de reducción implícitas en los NDCs
7. Análisis comparativo de las emisiones de CO$_2$e de los escenarios EPA y BAU, en relación con las metas de reducción implícitas en los NDCs

7.1 Introducción

El objetivo del presente capítulo, es obtener los porcentajes de reducción de emisiones de CO$_2$e de la matriz energética de las diferentes subregiones analizadas, mediante la aplicación de políticas actuales de desarrollo energético (Escenario EPA), en comparación con las producidas en el escenario de línea base BAU, y la diferencia de éstas, con las metas referenciales de reducción implícitas en las NDCs.

La magnitud de las emisiones de GEI valorada en miles de toneladas (kt) de CO$_2$e, se calcula multiplicando cada flujo de la matriz energética, tanto de oferta como de consumo, medido en miles de barriles equivalentes (kbep), por su correspondiente factor de emisión. Los factores de emisión utilizados, son los propuestos por el IPCC y se encuentran recopilados en la base de datos del SieLAC de OLADE, los mismos que se pueden observar en el Anexo V del presente documento.

En el caso de la generación eléctrica, los factores de emisión de GEI, corresponden exclusivamente al uso de combustibles fósiles, ya que para la energía nuclear y las fuentes de energía renovables, incluyendo la biomasa, los factores de emisión se consideran nulos. De igual manera en el consumo final, tanto para la biomasa primaria como para la secundaria, se consideran factores nulos de emisión de CO$_2$e.
7.2 Brasil

Figura 7.1. Emisiones totales de CO$_2$e de la matriz energética de Brasil

Como se puede observar en la figura 7.2, la aplicación del escenario de políticas actuales (EPA) en Brasil, produciría un porcentaje de disminución de emisiones de CO$_2$e, respecto al escenario BAU de solamente un 8.3% durante todo el período de proyección y del 10.4% en valores anuales del año 2030. Estos porcentajes son muy inferiores a los que aparecen en los NDCs, de la mayoría de los países y de la tomada como referencia para la región (25-30%). Brasil plantea una reducción global del 43% al año 2030 en comparación con el año 2005 (ver Anexo II). Sin embargo, no se menciona una meta específica para el sector de la energía.
Un ejercicio reciente realizado en el Ministerio de Minas y Energía de Brasil (MME), establece algunas tasas promedio anual de variación de las emisiones de GEIs respecto al año 2015, para diferentes sectores, con las cuales este país podría cumplir con las metas definidas en sus NDCs. Dichas tasas se observan en la Tabla 7.1.

Tabla 7.1. Variación de las emisiones de GEIs hasta el año 2030, para Brasil

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-37,0</td>
<td>-43,0</td>
<td>-6,7</td>
<td>4,7</td>
<td>0,9</td>
</tr>
<tr>
<td>Cambio en el uso del suelo y bosques</td>
<td>-67,9</td>
<td>-84,7</td>
<td>-16,1</td>
<td>13,3</td>
<td>-0,8</td>
</tr>
<tr>
<td>Agropecuario</td>
<td>11,4</td>
<td>16,5</td>
<td>0,8</td>
<td>0,6</td>
<td>0,5</td>
</tr>
<tr>
<td>Energético</td>
<td>57,8</td>
<td>88,7</td>
<td>3,7</td>
<td>1,8</td>
<td>1,8</td>
</tr>
<tr>
<td>Tratamiento de residuos y procesos industriales</td>
<td>43,8</td>
<td>75,3</td>
<td>2,7</td>
<td>2,0</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Fuente: MME/DIE/SPE/Patusco, 2018

Como resultados de la simulación, las emisiones del escenario BAU crecen durante el período de proyección a una tasa promedio anual del 3,4%, mientras que en el EPA esta tasa se reduce a 2,6%, valor sin embargo más alto que el porcentaje presentado en la tabla 7.1 (1,8%). Con esta comparación, se concluye que el escenario EPA es insuficiente para el cumplimiento de la meta general de reducción de emisiones establecida por Brasil en sus NDCs.
7.3 México

Figura 7.3. Emisiones totales de CO2e de la matriz energética de México

![Gráfico de barras para emisiones totales de CO2e de la matriz energética de México]

Fuente: Resultados de la simulación

Figura 7.4. Porcentaje de reducción de emisiones de CO2e de la matriz energética de México, respecto al escenario BAU

![Gráfico de barras para porcentaje de reducción de emisiones de CO2e de la matriz energética de México]

Fuente: Resultados de la simulación

En México, el porcentaje de reducción de emisiones de CO2e para valores anuales en el año 2030, es aproximadamente el doble del porcentaje de reducción acumuladas en todo el período de proyección, como se observa en la Figura 7.4. Sin embargo, este porcentaje es mucho menor que el 25% establecido por México en sus NDCs como meta general de reducción de emisiones respecto al escenario BAU (ver Anexo II). Esto significa que, con el escenario EPA, el sector energético de México, no estaría realizando una contribución suficiente para conseguir dicha meta a pesar de que el sector es responsable del 67,3% del total de emisiones (ver Anexo VI).
7.4 América Central

Figura 7.5. Emisiones totales de CO2e de la matriz energética de América Central

Figura 7.6. Porcentaje de reducción de emisiones de CO2e de la matriz energética de América Central, respecto al escenario BAU

La subregión de América Central es la que mayores porcentajes de reducción logra en las emisiones de CO2e del sector energético, gracias a la aplicación de las políticas actuales de desarrollo energético (EPA). Esto se debe al importante componente renovable de los cronogramas de expansión del sector eléctrico de la mayoría de los países que la conforman.

Desafortunadamente, los valores disponibles en los NDCs de los países de esta región no son suficientes para extraer conclusiones con respecto a si las políticas actuales bastan para alcanzar las metas. Guatemala presenta un objetivo entre el 11,2% y el 22,5% y Honduras un máximo del 15,0%.
7.5 Subregión Andina

Figura 7.7. Emisiones totales de CO2e de la matriz energética de la Subregión Andina

![Gráfico de líneas mostrando emisiones de CO2e](image)

Fuente: Resultados de la simulación

Figura 7.8. Porcentaje de reducción de emisiones de CO2e de la matriz energética de la Subregión Andina, respecto al escenario BAU

![Gráfico de barras mostrando reducción de emisiones](image)

Fuente: Resultados de la simulación

La diferencia entre las emisiones de CO2e emitidas en el escenario EPA y el escenario BAU en la Subregión Andina, es relativamente baja debido a que, en ambos escenarios, las matrices de generación eléctrica son predominantemente hidráulicas; y dado el abundante potencial de este recurso en la subregión, es el que domina en los cronogramas de expansión de la mayoría de países que la integran.

De acuerdo a las NDCs de los países andinos (Anexo II), se podría tomar como referencia una meta de reducción de emisiones de entre el 20 y 25% a nivel subregional, por lo que se haría necesario profundizar en las medidas de desarrollo energético limpio para alcanzar dicha meta referencial.
7.6 Cono Sur

Figura 7.9. Emisiones totales de CO2e de la matriz energética del Cono Sur

![Gráfica de emisiones totales de CO2e del Cono Sur](image)

Fuente: Resultados de la simulación

Figura 7.10. Porcentaje de reducción de emisiones de CO2e de la matriz energética del Cono Sur, respecto al escenario BAU

![Gráfica de porcentaje de reducción de emisiones de CO2e](image)

Fuente: Resultados de la simulación

Como se puede observar en la figura 7.10., de forma similar a lo que ocurre con la Subregión Andina, el escenario de políticas actuales EPA, produce relativamente bajos porcentajes de reducción de emisiones de CO2e respecto al escenario BAU, ya que la matriz de generación eléctrica continúa dependiendo básicamente de la hidroenergía y el gas natural en ambos escenarios.

Teniendo en cuenta el peso de Argentina (reducción: 20-40%) y Chile (reducción 30-45%) en la región, una meta de reducción de emisiones de GEI al año 2030 del 20% resulta representativa para la región. Por tanto, la reducción presentada en la Figura 7.10 queda muy lejos de los valores que se pretendan.
7.7 El Caribe

Figura 7.11. Emisiones totales de CO2e de la matriz energética de El Caribe

En el caso de El Caribe, subregión altamente dependiente de fuentes fósiles, como el gas natural y los petrolíferos; y con limitados potenciales de hidroenergía y de ERNC, los porcentajes de disminución de emisiones de CO2e conseguidos en el escenario EPA, respecto al escenario BAU, son del orden del 10.4% para el año 2030, como se observa en la figura 7.12.

Considerando el gran impulso que Cuba quiere dar a las energías renovables y a las ambiciosas reducciones de emisiones planteadas por países como Barbados, Granada, República dominicana y Trinidad y Tobago, una meta promedio del 15% resulta representativa de la región. Los valores calculados quedan, pues, por debajo de este. Está justificada, por tanto, una propuesta de un escenario energético alternativo que permita alcanzar dicha meta.
7.8 América Latina y El Caribe (ALC)

Figura 7.13. Emisiones totales de CO$_2$e de la matriz energética de ALC

En el panorama regional de ALC, el agregado de las emisiones de CO$_2$e de las diferentes subregiones, muestra que con el escenario EPA, se conseguiría valores relativamente modestos en los porcentajes de reducción, como se puede observar en la Figura 7.14. Como ya se mencionó en el capítulo 4, debido a la heterogeneidad de la región y a la falta de metas bien definidas de reducción de emisiones por parte de muchos países, no es posible extraer una conclusión precisa a nivel regional. Sin embargo, teniendo en cuenta las reducciones planteadas por los cuatro países con mayor peso económico en la región: Brasil (43%), México (25%), Argentina (20-40%) y Colombia (20-30%), se ha planteado una meta referencial para la región de ALC de entre el 25 y 30% respecto al escenario BAU. Con este rango, todo parece indicar que las reducciones que se alcanzarían por el escenario EPA a nivel regional serían insuficientes.
8. Construcción del escenario orientado al cumplimiento de las NDCs (ECN).
8. Construcción del escenario orientado al cumplimiento de las NDCs (ECN).

8.1 Consideraciones generales

Como se pudo observar en el capítulo anterior, los porcentajes de disminución de emisiones de CO2e obtenidos de la simulación del escenario de políticas actuales (EPA), con respecto al escenario de línea base (BAU), resultan ser significativamente inferiores a las metas referenciales para el sector energético, definidas en relación con los NDCs. Por esta razón, se presenta este tercer escenario, donde se simula una política mucho más agresiva de desarrollo energético sostenible, que contempla medidas más vigorosas de eficiencia energética en los principales sectores de consumo y una transición más pronunciada hacia una matriz de generación eléctrica con fuentes de energía renovable. De esta forma se busca obtener porcentajes de reducción de las emisiones de GEI en el sector energético, que contribuyan de mejor manera a los compromisos asumidos por los países en la materia. Las premisas consideradas para la definición del escenario ECN son las siguientes:

- El escenario ECN, se configura en el Modelo SAME como una ramificación del escenario EPA, con raíz en el año 2016. Es decir que, a partir del año 2017, empiezan a surgir efecto las premisas de este nuevo escenario energético.

- El escenario ECN, es de anticipación o tipo “roadmap”, donde se define un futuro deseable de la matriz energética en el horizonte de estudio y luego se determina la evolución de dicha matriz desde su estado actual (año base) hasta dicho estado futuro.

- En el Anexo IV, se especifica las medidas de promoción de fuentes sustentables de energía y eficiencia energética, propuestas para cada subregión y sector de consumo, para el año 2030. Con estas medidas se pretende disminuir las emisiones de GEI en el consumo final, con base en: 1) reducir el consumo final total de energía, en el escenario ECN, manteniendo los mismos niveles de energía útil correspondientes al escenario EPA; y 2) incrementar el uso de fuentes no contaminantes, como la electricidad de origen renovable y los biocombustibles. Características específicas de dichas medidas se detallan a continuación:

 a) Las medidas de eficiencia energética en los principales sectores de consumo (transporte, industrial, residencial y comercial), corresponden en algunos casos a sustitución de fuentes de energía y en otros, a sustitución de tecnologías convencionales por tecnologías más eficientes.

 b) Se promueve una mayor penetración de la electricidad, en los usos finales afines, como transporte, cocción, fuerza motriz, calor directo, etc.
c) Se procura el Incremento en el consumo de biocombustibles en el transporte carretero, para desplazar parcialmente el uso de combustibles fósiles, especialmente gasolina y diésel.

d) Se propone el mayor aprovechamiento de la energía solar térmica para calentamiento de agua, en el sector residencial, a fin de reducir el gasto de combustibles fósiles y electricidad. Si bien, el consumo de esta fuente, puede estar implícito en los escenarios BAU y EPA, al ser considerada como una fuente sustituta, en el escenario ECN, queda explícito su uso diferencial en este escenario.

e) Debido al nivel de agregación de los datos de consumo disponibles, no es posible conocer de manera precisa los valores de eficiencias de transformación y de energía útil en los diferentes usos finales. Por esta razón, se utilizaron los valores relativos de eficiencias de consumo que se muestran en el Anexo III, con los cuales se puede calcular una energía útil de referencia y evaluar el efecto de la sustitución entre fuentes y tecnologías de consumo sobre el gasto de energía final.

En estricto rigor, el conjunto de medidas recogidas en el Anexo IV deberían ser sólo valores de partida del escenario ECN, los cuales deberían ajustarse para cada subregión mediante un proceso iterativo. En cada iteración se establecerían nuevas combinaciones de medidas hasta alcanzar la convergencia de los valores de emisiones obtenidos para cada nueva combinación con los valores de las metas establecidas en las NDCs. A la práctica, según se ha explicado ya en capítulos anteriores, el hecho de no disponer de metas cuantitativas precisas impide tal análisis. Por tanto, el escenario ECN aquí empleado es un escenario de trabajo definido a partir de las medidas planteadas en el Anexo IV, que se asumen como una primera aproximación útil para lograr el objetivo principal de este estudio (ver la Introducción). Estas medidas se han definido con base en la experiencia y conocimientos que tiene OLADE según valores que la Organización estima como factibles para las capacidades de la región ALC en el horizonte 2030, y, tal como se verá en el Capítulo 10, dan una idea del tipo de medidas que podrían adoptarse en la región para alcanzar los compromisos establecidos en las NDCs.

A continuación, se presentan los valores de consumo y generación más relevantes que resultan de la simulación del escenario ECN. El cálculo de emisiones para este escenario, así como su comparación con las emisiones de los escenarios BAU y EPA, se presenta en el Capítulo 10.

4 El gas natural es también un combustible fósil, pero es más limpio que el carbón mineral y los derivados de petróleo, por lo que en los planes de expansión de muchos países (México entre ellos) se considera una mayor penetración de esta fuente. Por esta razón no se consideró conveniente eliminar su expansión en el escenario ECN.
8.2 Brasil

8.2.1 Proyección del consumo final de energía

Tabla 8.1. Proyección del consumo final de energía en Brasil, escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>753</td>
<td>839</td>
<td>898</td>
<td>917</td>
<td>1.3%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>91</td>
<td>91</td>
<td>92</td>
<td>100</td>
<td>0.6%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>84</td>
<td>100</td>
<td>108</td>
<td>108</td>
<td>1.7%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>443</td>
<td>488</td>
<td>530</td>
<td>541</td>
<td>1.3%</td>
</tr>
<tr>
<td>Solar térmica</td>
<td>0</td>
<td>6</td>
<td>20</td>
<td>34</td>
<td>18.4%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>304</td>
<td>360</td>
<td>438</td>
<td>601</td>
<td>4.6%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,676</td>
<td>1,883</td>
<td>2,086</td>
<td>2,301</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
En el escenario ECN, la evolución de la matriz de consumo final de Brasil, se caracteriza por un importante incremento en la participación de la electricidad, un mayor uso de calentamiento de agua con colectores solares y una reducción apreciable en el uso de petrolíferos.

Tabla 8.2. Proyección del consumo de electricidad de Brasil, Escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.c.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>491,241</td>
<td>580,484</td>
<td>706,127</td>
<td>969,971</td>
<td>4.6%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
En el escenario ECN, se aprecia un marcado incremento en la tasa de crecimiento anual del consumo de electricidad para los 5 últimos años del período de proyección (figura 8.3), debido a las medidas simuladas de mayor electrificación de usos finales, en el sector transporte, industrial, residencial y comercial.

8.2.2 Proyección de la generación eléctrica

Tabla 8.3. Cronogramas de instalación/retiro de capacidad instalada (MW) en Brasil, Escenario ECN

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>3,868</td>
<td>1,215</td>
<td>-3,577</td>
<td>-215</td>
<td>137</td>
<td>2,392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>5,380</td>
<td>591</td>
<td>129</td>
<td>2,818</td>
<td>172</td>
<td>2,755</td>
<td>2,500</td>
<td>1,030</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>5,218</td>
<td>28</td>
<td>172</td>
<td>2,755</td>
<td>1,030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>2,285</td>
<td>324</td>
<td>1,047</td>
<td>670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>265</td>
<td>571</td>
<td>1,500</td>
<td>1,500</td>
<td></td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>500</td>
<td>1,000</td>
<td></td>
<td>2,500</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>1,000</td>
<td></td>
<td></td>
<td>2,500</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td>1,405</td>
</tr>
<tr>
<td>2023</td>
<td>1,000</td>
<td>1,500</td>
<td>1,000</td>
<td>2,500</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>1,000</td>
<td></td>
<td></td>
<td>2,500</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>1,500</td>
<td>584</td>
<td>1,000</td>
<td>2,500</td>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
<td>1,405</td>
</tr>
<tr>
<td>2026</td>
<td>1,500</td>
<td>583</td>
<td></td>
<td>2,500</td>
<td></td>
<td>1,000</td>
<td>1,500</td>
<td>1,405</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>2,500</td>
<td>1,000</td>
<td></td>
<td>3,000</td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>3,000</td>
<td>2,000</td>
<td>-1,000</td>
<td>3,500</td>
<td></td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>3,500</td>
<td>2,500</td>
<td>-1,000</td>
<td>4,000</td>
<td></td>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>4,000</td>
<td>3,000</td>
<td>-1,000</td>
<td>4,500</td>
<td></td>
<td>3,500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base al Plan Decenal de Energía de Brasil (2016-2026)
Figura 8.4. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de Brasil, Escenario ECN

Fuente: Elaboración propia con base en el “Plan Decenal de Energía de Brasil 2016-2026” (EPE, 2017)

Tabla 8.4. Proyección de la capacidad instalada en Brasil, escenario ECN (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>86,540</td>
<td>103,556</td>
<td>108,556</td>
<td>123,056</td>
</tr>
<tr>
<td>Gas natural</td>
<td>11,317</td>
<td>14,672</td>
<td>16,756</td>
<td>25,839</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>5,542</td>
<td>1,965</td>
<td>1,965</td>
<td>1,965</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>3,064</td>
<td>2,849</td>
<td>2,849</td>
<td>0</td>
</tr>
<tr>
<td>Biomasa</td>
<td>15,773</td>
<td>17,106</td>
<td>22,106</td>
<td>32,106</td>
</tr>
<tr>
<td>Eólica</td>
<td>9,029</td>
<td>19,541</td>
<td>32,041</td>
<td>49,541</td>
</tr>
<tr>
<td>Solar</td>
<td>37</td>
<td>4,176</td>
<td>11,676</td>
<td>24,176</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1,990</td>
<td>1,990</td>
<td>1,990</td>
<td>3,395</td>
</tr>
<tr>
<td>TOTAL</td>
<td>133,292</td>
<td>165,855</td>
<td>197,939</td>
<td>260,078</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en el “Plan Decenal de Energía de Brasil 2016-2026” (EPE, 2017)
Como se observa tanto en el cronograma de instalación retiro, como en el gráfico de capacidad instalada total, la instalación de ERNC en Brasil se hace muy importante, sobre todo en los últimos 5 años del período de proyección, gracias a lo cual, la energía eólica, pasa a ocupar el segundo puesto en importancia, luego de la hidroenergía, en el año 2030.

Tabla 8.5. Proyección de la generación de electricidad en Brasil, escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>359,975</td>
<td>471,718</td>
<td>513,513</td>
<td>646,782</td>
</tr>
<tr>
<td>Gas natural</td>
<td>79,541</td>
<td>38,758</td>
<td>41,699</td>
<td>63,228</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>37,735</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>19,108</td>
<td>17,767</td>
<td>17,767</td>
<td>0</td>
</tr>
<tr>
<td>Biomasa</td>
<td>49,059</td>
<td>53,205</td>
<td>68,756</td>
<td>99,858</td>
</tr>
<tr>
<td>Eólica</td>
<td>21,640</td>
<td>70,360</td>
<td>120,713</td>
<td>195,292</td>
</tr>
<tr>
<td>Solar</td>
<td>59</td>
<td>8,780</td>
<td>24,548</td>
<td>50,828</td>
</tr>
<tr>
<td>Nuclear</td>
<td>14,744</td>
<td>14,744</td>
<td>14,744</td>
<td>25,153</td>
</tr>
<tr>
<td>TOTAL</td>
<td>581,861</td>
<td>675,332</td>
<td>801,740</td>
<td>1,081,141</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación, Escenario EPA
En cuanto a la evolución de la matriz de generación eléctrica de Brasil en el escenario ECN, cabe destacar que las únicas fuentes no renovables que todavía se usan en el año 2030, son el gas natural y la nuclear, con una participación minoritaria, mientras que las fuentes renovables ocupan el 92% de dicha matriz, apreciándose, el considerable incremento en la participación de la energía eólica y la solar.
8.2.3 Proyección de la oferta total de energía

Tabla 8.6. Proyección de la oferta total energía en Brasil, escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.c.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>821</td>
<td>999</td>
<td>1,088</td>
<td>1,132</td>
<td>2.2%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>281</td>
<td>213</td>
<td>224</td>
<td>271</td>
<td>-0.2%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>127</td>
<td>139</td>
<td>149</td>
<td>120</td>
<td>-0.4%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>47</td>
<td>3.6%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>244</td>
<td>316</td>
<td>347</td>
<td>438</td>
<td>4.0%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>655</td>
<td>724</td>
<td>815</td>
<td>893</td>
<td>2.1%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>13</td>
<td>55</td>
<td>110</td>
<td>187</td>
<td>16.6%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,169</td>
<td>2,476</td>
<td>2,760</td>
<td>3,088</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación, Escenario EPA

Figura 8.8. Proyección de la oferta total de energía en Brasil, escenario ECN

Figura 8.9. Evolución de la matriz de oferta total de energía en Brasil, escenario ECN

Fuente: Resultados de la simulación
De manera similar a lo que ocurre con la matriz de generación eléctrica, con la simulación del escenario ECN, se logra un importante incremento de la renovabilidad de la matriz de oferta total de energía, pasando del 42% en el año base al 49% en el año 2030.

8.3 México
8.3.1 Proyección del consumo final de energía

Tabla 8.7. Proyección del consumo final de energía en México, escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>539</td>
<td>553</td>
<td>541</td>
<td>471</td>
<td>-0.9%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>118</td>
<td>134</td>
<td>153</td>
<td>179</td>
<td>2.8%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>47</td>
<td>51</td>
<td>48</td>
<td>45</td>
<td>-0.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>52</td>
<td>51</td>
<td>46</td>
<td>41</td>
<td>-1.5%</td>
</tr>
<tr>
<td>Solar térmico</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>17</td>
<td>15.7%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>154</td>
<td>181</td>
<td>218</td>
<td>307</td>
<td>4.7%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>910</td>
<td>973</td>
<td>1,018</td>
<td>1,061</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 8.10. Proyección del consumo final de energía en México, escenario ECN

Fuente: Resultados de la simulación
En la evolución de la matriz de consumo final de energía en México, para el escenario ECN, se puede apreciar el importante incremento en la participación de la electricidad y el gas natural y la drástica reducción del uso de petrolíferos. También se destaca la penetración de energía solar térmica, que corresponde al mayor uso de colectores solares para calentamiento de agua.

Tabla 8.8. Proyección del consumo de electricidad de México, Escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>248,895</td>
<td>291,779</td>
<td>351,473</td>
<td>496,019</td>
<td>4.7%</td>
</tr>
</tbody>
</table>

El consumo anual de electricidad en México, para el escenario ECN, sufre una evidente aceleración en los cinco últimos años del período de proyección, como se observa en la figura 8.12, llegándose a duplicar en año 2030, respecto al año base. Esto se debe a las medidas de electrificación de usos finales en los principales sectores de consumo final, incluido el transporte.
8.3.2 Proyección de la generación eléctrica

Tabla 8.9. Cronogramas de instalación/retiro de capacidad instalada (MW) en México, Escenario ECN

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>101</td>
<td>2,211</td>
<td>-2,380</td>
<td>378</td>
<td>527</td>
<td>1,361</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>57</td>
<td>1,286</td>
<td>-1,386</td>
<td>1,096</td>
<td>527</td>
<td>1,361</td>
<td>468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>29</td>
<td>1,400</td>
<td>-1,358</td>
<td>1,174</td>
<td>42</td>
<td>2,364</td>
<td>1,176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>1,980</td>
<td>1,398</td>
<td>-1,296</td>
<td>2,364</td>
<td>1,176</td>
<td>1,361</td>
<td>1,176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>1,013</td>
<td>2,189</td>
<td>-1,193</td>
<td>1,353</td>
<td>1,093</td>
<td>1,361</td>
<td>1,353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>27</td>
<td>-640</td>
<td>-320</td>
<td>452</td>
<td>25</td>
<td>450</td>
<td>205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>-245</td>
<td>-899</td>
<td>-30</td>
<td>50</td>
<td>944</td>
<td>162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td>316</td>
<td>1,034</td>
<td>-1,058</td>
<td>40</td>
<td>356</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>2,134</td>
<td>-992</td>
<td>1,574</td>
<td>111</td>
<td>910</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>327</td>
<td>1,109</td>
<td>533</td>
<td>108</td>
<td>891</td>
<td>537</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td>186</td>
<td>1,963</td>
<td>356</td>
<td>130</td>
<td>1,026</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>230</td>
<td>539</td>
<td>-341</td>
<td>580</td>
<td>230</td>
<td>1,013</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>351</td>
<td>2,403</td>
<td>1,000</td>
<td>250</td>
<td>1,500</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>510</td>
<td>2,506</td>
<td>-700</td>
<td>1,000</td>
<td>1,500</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>500</td>
<td>3,000</td>
<td>-700</td>
<td>1,500</td>
<td>200</td>
<td>1,361</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base al documento “Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles Más Limpios” (SENER, 2016)

Figura 8.13. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de México, Escenario ECN

Fuente: Elaboración propia en base al documento “Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles Más Limpios” (SENER, 2016)

Tabla 8.10. Proyección de la capacidad instalada en México, Escenario ECN (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>12,028</td>
<td>12,211</td>
<td>13,081</td>
<td>14,848</td>
</tr>
<tr>
<td>Gas natural</td>
<td>22,658</td>
<td>32,539</td>
<td>35,940</td>
<td>46,345</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>10,353</td>
<td>1,555</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>5,378</td>
<td>5,756</td>
<td>5,756</td>
<td>4,356</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,347</td>
<td>3,720</td>
<td>6,279</td>
<td>9,295</td>
</tr>
<tr>
<td>Geotermia</td>
<td>874</td>
<td>854</td>
<td>1,183</td>
<td>2,293</td>
</tr>
<tr>
<td>Eólica</td>
<td>699</td>
<td>6,249</td>
<td>9,800</td>
<td>16,339</td>
</tr>
<tr>
<td>Solar</td>
<td>6</td>
<td>5,446</td>
<td>6,600</td>
<td>7,422</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1,510</td>
<td>1,510</td>
<td>1,510</td>
<td>4,231</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,853</td>
<td>69,840</td>
<td>80,149</td>
<td>105,129</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base al documento “Estrategia de Transición para Promover el Uso de Tecnologías y Combustibles Más Limpios” (SENER, 2016)
La expansión de la capacidad instalada en México, bajo las premisas del escenario ECN, se caracteriza por una implementación muy representativa de centrales a gas natural y de ERNC como la eólica, la solar, la geotermia y la biomasa, retirando completamente la capacidad de centrales térmicas alimentadas por petrolíferos. En este escenario, se mantiene la ampliación de la capacidad nucleoeléctrica en los dos años finales del periodo de proyección.

Tabla 8.11. Proyección de la generación de electricidad en México, escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>30,955</td>
<td>42,787</td>
<td>45,836</td>
<td>52,027</td>
</tr>
<tr>
<td>Gas natural</td>
<td>167,842</td>
<td>207,617</td>
<td>237,062</td>
<td>333,749</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>42,099</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>33,741</td>
<td>36,304</td>
<td>36,304</td>
<td>27,474</td>
</tr>
<tr>
<td>Biomasa</td>
<td>9,503</td>
<td>26,396</td>
<td>44,553</td>
<td>65,954</td>
</tr>
<tr>
<td>Geotermia</td>
<td>6,191</td>
<td>6,060</td>
<td>8,394</td>
<td>16,270</td>
</tr>
<tr>
<td>Eólica</td>
<td>8,667</td>
<td>21,897</td>
<td>34,340</td>
<td>57,252</td>
</tr>
<tr>
<td>Solar</td>
<td>93</td>
<td>9,541</td>
<td>11,563</td>
<td>13,003</td>
</tr>
<tr>
<td>Nuclear</td>
<td>11,453</td>
<td>11,508</td>
<td>11,508</td>
<td>32,245</td>
</tr>
<tr>
<td>TOTAL</td>
<td>310,544</td>
<td>362,110</td>
<td>429,560</td>
<td>597,975</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
En el escenario ECN es evidente la penetración de las ERNC en la matriz de generación eléctrica en México, como la energía eólica, la energía solar, la biomasa y la geotermia, que en conjunto pasan de representar un modesto 8% en el año base a un importante 25% en el año 2030. El gas natural incrementa también su participación, mientras que se prescinde completamente del uso de petrolíferos.

8.3.3 Proyección de la oferta total de energía

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.c.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>538</td>
<td>542</td>
<td>534</td>
<td>469</td>
<td>-1.4%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>566</td>
<td>660</td>
<td>741</td>
<td>945</td>
<td>3.5%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>109</td>
<td>116</td>
<td>112</td>
<td>90</td>
<td>-1.3%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>58</td>
<td>7.1%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>15</td>
<td>20</td>
<td>21</td>
<td>32</td>
<td>2.6%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>89</td>
<td>107</td>
<td>110</td>
<td>144</td>
<td>7.1%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>23</td>
<td>46</td>
<td>71</td>
<td>121</td>
<td>11.7%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,382</td>
<td>1,511</td>
<td>1,649</td>
<td>1,898</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
En la matriz de oferta total de energía de México, en el escenario ECN, el gas natural escala en participación hasta ocupar el 50% de dicha matriz, mientras que los petrolíferos sufren una drástica reducción. La biomasa y otras renovables como la energía eólica, la solar y la geotermia, adquieren una importante participación durante el período de proyección.
8.4 América Central

8.4.1 Proyección del consumo de energía

Tabla 8.13. Proyección del consumo final de energía en América Central, escenario ECN (Mtep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>98</td>
<td>109</td>
<td>118</td>
<td>109</td>
<td>0.7%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-0.9%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>77</td>
<td>70</td>
<td>53</td>
<td>42</td>
<td>-4.0%</td>
</tr>
<tr>
<td>Solar térmico</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>17.9%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>27</td>
<td>31</td>
<td>36</td>
<td>53</td>
<td>4.5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>205</td>
<td>214</td>
<td>212</td>
<td>212</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 8.19. Proyección del consumo final de energía en América Central, Escenario ECN

Fuente: Resultados de la simulación
La evolución de la matriz de consumo final en América Central, bajo las premisas del escenario ECN, se caracteriza por una reversión en el crecimiento del consumo total, gracias a las medidas de eficiencia energética, de forma que el valor correspondiente al año 2030, es casi igual al valor en el año base. Por otra parte, se hace evidente la sustitución del consumo de leña por Gp y electricidad, lo que permite que esta fuente y los petrolíferos ganen participación en la matriz.

Tabla 8.14. Proyección del consumo de electricidad de América Central, Escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>44,082</td>
<td>49,679</td>
<td>57,622</td>
<td>84,959</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Figura 8.20. Evolución de la matriz de consumo final de energía en América Central, Escenario ECN

Figura 8.21. Consumo total de electricidad de México, todos los escenarios
8.4.2 Proyección de la generación eléctrica

Tabla 8.15. Cronogramas de instalación/retiro de capacidad instalada (MW) en América Central, Escenario ECN

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>437</td>
<td>120</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>350</td>
<td>-132</td>
<td>100</td>
<td>150</td>
<td>300</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>220</td>
<td>-286</td>
<td>50</td>
<td>35</td>
<td>127</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>314</td>
<td>300</td>
<td>-237</td>
<td>-16</td>
<td>-8</td>
<td>55</td>
<td>23</td>
<td>253</td>
</tr>
<tr>
<td>2020</td>
<td>263</td>
<td>-177</td>
<td>25</td>
<td>50</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>266</td>
<td>380</td>
<td>-22</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>579</td>
<td>500</td>
<td>-22</td>
<td>32</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td>26</td>
<td></td>
<td>3</td>
<td>87</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>92</td>
<td>400</td>
<td>-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>267</td>
<td>500</td>
<td>-20</td>
<td>13</td>
<td>25</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td>1,146</td>
<td>-125</td>
<td>-90</td>
<td>60</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>448</td>
<td>-180</td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>300</td>
<td>500</td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>300</td>
<td>500</td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>300</td>
<td>500</td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.

Figura 8.22. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de América Central, Escenario ECN

Tabla 8.16. Proyección de la capacidad instalada en América Central, Escenario ECN (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>6,122</td>
<td>7,706</td>
<td>8,936</td>
<td>11,450</td>
</tr>
<tr>
<td>Gas natural</td>
<td>0</td>
<td>300</td>
<td>2,080</td>
<td>3,580</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>3,436</td>
<td>2,724</td>
<td>2,682</td>
<td>2,377</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>482</td>
<td>466</td>
<td>466</td>
<td>376</td>
</tr>
<tr>
<td>Biomasa</td>
<td>667</td>
<td>845</td>
<td>856</td>
<td>1,116</td>
</tr>
<tr>
<td>Geotermia</td>
<td>610</td>
<td>850</td>
<td>970</td>
<td>1,290</td>
</tr>
<tr>
<td>Eólica</td>
<td>773</td>
<td>1,373</td>
<td>1,473</td>
<td>1,973</td>
</tr>
<tr>
<td>Solar</td>
<td>804</td>
<td>1,479</td>
<td>1,792</td>
<td>2,042</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12,894</td>
<td>15,742</td>
<td>19,254</td>
<td>24,204</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.
Figura 8.23. Capacidad instalada de generación eléctrica de América Central, Escenario ECN

Tabla 8.17. Proyección de la generación de electricidad en América Central, Escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>25,195</td>
<td>33,751</td>
<td>39,141</td>
<td>50,153</td>
</tr>
<tr>
<td>Gas natural</td>
<td>0</td>
<td>2,102</td>
<td>6,350</td>
<td>21,187</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>11,004</td>
<td>3,039</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>5,446</td>
<td>3,264</td>
<td>3,264</td>
<td>2,633</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,810</td>
<td>2,294</td>
<td>2,324</td>
<td>3,030</td>
</tr>
<tr>
<td>Geotermia</td>
<td>5,670</td>
<td>6,701</td>
<td>7,647</td>
<td>10,170</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,291</td>
<td>4,811</td>
<td>5,161</td>
<td>6,913</td>
</tr>
<tr>
<td>Solar</td>
<td>1,408</td>
<td>2,592</td>
<td>3,139</td>
<td>3,577</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51,824</td>
<td>58,555</td>
<td>67,027</td>
<td>97,665</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 8.24. Proyección de la generación eléctrica de América Central, Escenario ECN

Figura 8.25. Evolución de la matriz de generación eléctrica de América Central, Escenario ECN

Bajo las premisas del escenario ECN, en la matriz de generación eléctrica en América Central, las fuentes de energía renovables incrementan de manera apreciable su participación para el año 2030 y en conjunto con el gas natural desplazan completamente a los petrolíferos y reducen considerablemente la participación del carbón mineral.

8.4.3 Proyección de oferta total de energía

Tabla 8.18. Proyección de la oferta total energía en América Central, escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.c.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>118</td>
<td>116</td>
<td>119</td>
<td>110</td>
<td>-0.5%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>0.01</td>
<td>3</td>
<td>10</td>
<td>33</td>
<td>76.9%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>-3.7%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>17</td>
<td>22</td>
<td>25</td>
<td>36</td>
<td>8.5%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>82</td>
<td>78</td>
<td>72</td>
<td>56</td>
<td>-2.5%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>13</td>
<td>19</td>
<td>24</td>
<td>32</td>
<td>6.2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>243</td>
<td>246</td>
<td>248</td>
<td>272</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 8.26. Proyección de la oferta total de energía en América Central, escenario ECN

Figura 8.27. Evolución de la matriz de oferta total de energía en América Central, Escenario ECN

Bajo las premisas del escenario ECN, en la matriz de oferta total de energía de América Central, se destaca la reducción de la participación de la biomasa y los petrolíferos y el importante incremento de las energías renovables y el gas natural.
8.5 Subregión Andina

8.5.1 Proyección del consumo final de energía

Tabla 8.19. Proyección del consumo final de energía en la Subregión Andina, escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>447</td>
<td>525</td>
<td>589</td>
<td>561</td>
<td>1.5%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>134</td>
<td>126</td>
<td>126</td>
<td>129</td>
<td>-0.2%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>29</td>
<td>36</td>
<td>41</td>
<td>46</td>
<td>3.1%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>60</td>
<td>64</td>
<td>71</td>
<td>78</td>
<td>1.8%</td>
</tr>
<tr>
<td>Solar térmica</td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>17.9%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>133</td>
<td>154</td>
<td>182</td>
<td>303</td>
<td>5.6%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>803</td>
<td>910</td>
<td>1,024</td>
<td>1,142</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 8.28. Proyección del consumo final de energía en la Subregión Andina, Escenario ECN

Figura 8.29. Evolución de la matriz de consumo final de energía en la Subregión Andina, Escenario ECN

Fuente: Resultados de la simulación
Gracias a la mayor electrificación de los principales sectores de consumo, considerada como premisa en el escenario ECN, en la matriz de consumo final de la Subregión Andina, la electricidad gana participación considerablemente, desplazando hidrocarburos.

Tabla 8.20. Proyección del consumo de electricidad de la Subregión Andina, Escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>215,097</td>
<td>248,928</td>
<td>294,494</td>
<td>488,880</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Figura 8.30. Consumo total de electricidad de la Subregión Andina, todos los escenarios

La premisa de mayor electrificación de los principales sectores de consumo final, producen una evidente aceleración del consumo de electricidad en los últimos años del período de proyección.

8.5.2 Proyección de la generación eléctrica

Tabla 8.21. Cronogramas de instalación/retiro de capacidad instalada (MW) en la Subregión Andina, Escenario ECN

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>1,234</td>
<td>620</td>
<td>610</td>
<td>543</td>
<td>2</td>
<td>0</td>
<td>95</td>
<td>42</td>
</tr>
<tr>
<td>2017</td>
<td>1,447</td>
<td>1,000</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>1,124</td>
<td>1,458</td>
<td>200</td>
<td>100</td>
<td>282</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>1,488</td>
<td>1,138</td>
<td>200</td>
<td>100</td>
<td>523</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>808</td>
<td>173</td>
<td>200</td>
<td>100</td>
<td>709</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>947</td>
<td>72</td>
<td>200</td>
<td>100</td>
<td>700</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>2,598</td>
<td>497</td>
<td>200</td>
<td>100</td>
<td>700</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td>1,613</td>
<td>637</td>
<td>200</td>
<td>100</td>
<td>700</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>1,641</td>
<td>363</td>
<td>200</td>
<td>100</td>
<td>700</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>4,000</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>1,000</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td>2,500</td>
<td>456</td>
<td>500</td>
<td>400</td>
<td>1,000</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>2,500</td>
<td>423</td>
<td>500</td>
<td>400</td>
<td>1,000</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>2,500</td>
<td>453</td>
<td>500</td>
<td>400</td>
<td>1,500</td>
<td>1,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>4,000</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>2,000</td>
<td>1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>4,000</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>2,000</td>
<td>1,500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.
Figura 8.31. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de la Subregión Andina, Escenario ECN

Tabla 8.22. Proyección de la capacidad instalada en la Subregión Andina, Escenario ECN (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>28,019</td>
<td>36,320</td>
<td>45,660</td>
<td>61,160</td>
</tr>
<tr>
<td>Gas natural</td>
<td>11,089</td>
<td>15,477</td>
<td>17,503</td>
<td>19,879</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>13,041</td>
<td>13,652</td>
<td>13,652</td>
<td>13,652</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>992</td>
<td>1,535</td>
<td>1,535</td>
<td>1,535</td>
</tr>
<tr>
<td>Biomasa</td>
<td>984</td>
<td>1,786</td>
<td>3,086</td>
<td>5,586</td>
</tr>
<tr>
<td>Geotermia</td>
<td>0</td>
<td>351</td>
<td>1,151</td>
<td>3,151</td>
</tr>
<tr>
<td>Eólica</td>
<td>429</td>
<td>2,139</td>
<td>5,939</td>
<td>14,439</td>
</tr>
<tr>
<td>Solar</td>
<td>184</td>
<td>1,129</td>
<td>3,629</td>
<td>9,629</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,738</td>
<td>72,390</td>
<td>92,155</td>
<td>129,031</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.
La expansión de la capacidad instalada con base en energías renovables, cubren el acelerado crecimiento de la electricidad en el escenario ECN.

Tabla 8.23. Proyección de la generación de electricidad en la Subregión Andina, escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>152,886</td>
<td>198,181</td>
<td>249,141</td>
<td>333,716</td>
</tr>
<tr>
<td>Gas natural</td>
<td>77,709</td>
<td>85,287</td>
<td>46,673</td>
<td>110,949</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>39,985</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>6,953</td>
<td>10,760</td>
<td>10,760</td>
<td>10,760</td>
</tr>
<tr>
<td>Biomasa</td>
<td>2,844</td>
<td>5,163</td>
<td>8,921</td>
<td>16,148</td>
</tr>
<tr>
<td>Geotermia</td>
<td>0</td>
<td>2,769</td>
<td>9,076</td>
<td>24,844</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,503</td>
<td>7,493</td>
<td>20,809</td>
<td>50,593</td>
</tr>
<tr>
<td>Solar</td>
<td>323</td>
<td>1,979</td>
<td>6,359</td>
<td>16,871</td>
</tr>
<tr>
<td>TOTAL</td>
<td>282,203</td>
<td>311,632</td>
<td>351,738</td>
<td>563,880</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 8.33. Proyección de la generación eléctrica la Subregión Andina, Escenario ECN

Figura 8.32. Capacidad instalada de generación eléctrica de la Subregión Andina, Escenario ECN

Fuente: Elaboración propia en base a los planes de expansión de los países.
Figura 8.34. Evolución de la matriz de generación eléctrica de la Subregión Andina, Escenario ECN

Las ERNC, como la eólica, la geotermia, la biomasa y la solar, cobran relevancia en la evolución de la matriz de generación eléctrica de la Subregión Andina, bajo las premisas del escenario ECN.

8.5.3 Proyección de la oferta total de energía

Tabla 8.24. Proyección de la oferta total energía en la Subregión Andina, Escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.c.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>591</td>
<td>611</td>
<td>704</td>
<td>709</td>
<td>1.2%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>525</td>
<td>553</td>
<td>493</td>
<td>580</td>
<td>0.7%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>41</td>
<td>54</td>
<td>58</td>
<td>63</td>
<td>3.0%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>118</td>
<td>153</td>
<td>193</td>
<td>258</td>
<td>5.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>63</td>
<td>99</td>
<td>139</td>
<td>185</td>
<td>7.5%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>1</td>
<td>16</td>
<td>51</td>
<td>118</td>
<td>36.3%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,339</td>
<td>1,486</td>
<td>1,639</td>
<td>1,914</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Las energías renovables, incluyendo la hidroenergía, incrementan su participación en la matriz de oferta total, desplazando a los hidrocarburos.

8.6 Cono Sur
8.6.1 Proyección del consumo final de energía
Tabla 8.25. Proyección del consumo final de energía en el Cono Sur, Escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>312</td>
<td>335</td>
<td>338</td>
<td>320</td>
<td>0.2%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>163</td>
<td>170</td>
<td>175</td>
<td>188</td>
<td>1.0%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>-0.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>100</td>
<td>108</td>
<td>109</td>
<td>107</td>
<td>0.5%</td>
</tr>
<tr>
<td>Solar térmico</td>
<td>0</td>
<td>7</td>
<td>20</td>
<td>33</td>
<td>17.6%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>136</td>
<td>160</td>
<td>192</td>
<td>249</td>
<td>4.1%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>717</td>
<td>786</td>
<td>840</td>
<td>903</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La electricidad y el mayor uso de colectores solares para calentamiento de agua, permiten reducir la participación de los hidrocarburos en la matriz de consumo final.

Tabla 8.26. Proyección del consumo de electricidad en el Cono Sur, Escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>219,915</td>
<td>258,292</td>
<td>310,016</td>
<td>401,637</td>
<td>4.1%</td>
</tr>
</tbody>
</table>
El consumo de electricidad en el Cono Sur, llega a duplicarse, durante el período de proyección para el escenario ECN.

8.6.2 Proyección de la generación eléctrica

Tabla 8.27. Cronogramas de instalación/retiro de capacidad instalada (MW) en el Cono Sur, Escenario ECN

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>356</td>
<td>865</td>
<td>1888</td>
<td>688</td>
<td>0</td>
<td>48</td>
<td>1863</td>
<td>1569</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>362</td>
<td>901</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1241</td>
<td>917</td>
<td>745</td>
</tr>
<tr>
<td>2018</td>
<td>981</td>
<td>824</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1566</td>
<td>535</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>959</td>
<td>824</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1066</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>2020</td>
<td>706</td>
<td>644</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1066</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>2021</td>
<td>312</td>
<td>644</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1066</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>2022</td>
<td>453</td>
<td>644</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1066</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>309</td>
<td>644</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1066</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>2024</td>
<td>459</td>
<td>644</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1066</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>2025</td>
<td>1000</td>
<td>644</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>2026</td>
<td>1000</td>
<td>800</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>2027</td>
<td>1000</td>
<td>800</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>2028</td>
<td>1000</td>
<td>800</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>2029</td>
<td>1000</td>
<td>800</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>2030</td>
<td>1000</td>
<td>800</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.
Figura 8.40. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica del Cono Sur, Escenario ECN

Fuente: Elaboración propia en base a los planes de expansión de los países.

Tabla 8.28. Proyección de la capacidad instalada en el Cono Sur, Escenario ECN (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>28,732</td>
<td>32,096</td>
<td>34,629</td>
<td>39,629</td>
</tr>
<tr>
<td>Gas natural</td>
<td>18,647</td>
<td>22,705</td>
<td>25,925</td>
<td>29,925</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>4,513</td>
<td>6,401</td>
<td>6,401</td>
<td>6,401</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>10,320</td>
<td>11,008</td>
<td>11,008</td>
<td>11,008</td>
</tr>
<tr>
<td>Biomasa</td>
<td>829</td>
<td>1,229</td>
<td>1,829</td>
<td>2,829</td>
</tr>
<tr>
<td>Geotermia</td>
<td>0</td>
<td>448</td>
<td>1,048</td>
<td>2,048</td>
</tr>
<tr>
<td>Eólica</td>
<td>2,054</td>
<td>8,856</td>
<td>14,620</td>
<td>23,620</td>
</tr>
<tr>
<td>Solar</td>
<td>1,000</td>
<td>5,021</td>
<td>8,021</td>
<td>13,021</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1,010</td>
<td>1,755</td>
<td>1,755</td>
<td>1,755</td>
</tr>
<tr>
<td>TOTAL</td>
<td>67,104</td>
<td>89,518</td>
<td>105,235</td>
<td>130,235</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.
En la expansión de la capacidad instalada en el Cono Sur, predomina la implementación de centrales eólicas, llegando a ser en el año 2030, la tercera tecnología en importancia luego de las hidroeléctricas y las centrales a gas natural.

Tabla 8.29. Proyección de la generación de electricidad en el Cono Sur, escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>115,574</td>
<td>140,579</td>
<td>151,673</td>
<td>173,573</td>
</tr>
<tr>
<td>Gas natural</td>
<td>80,222</td>
<td>77,837</td>
<td>96,664</td>
<td>134,872</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>21,789</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>44,972</td>
<td>67,499</td>
<td>67,499</td>
<td>67,499</td>
</tr>
<tr>
<td>Biomasa</td>
<td>4,944</td>
<td>7,320</td>
<td>10,894</td>
<td>16,851</td>
</tr>
<tr>
<td>Geotermia</td>
<td>0</td>
<td>3,532</td>
<td>8,262</td>
<td>16,146</td>
</tr>
<tr>
<td>Eólica</td>
<td>6,112</td>
<td>31,032</td>
<td>51,230</td>
<td>82,766</td>
</tr>
<tr>
<td>Solar</td>
<td>3,799</td>
<td>13,195</td>
<td>21,079</td>
<td>34,219</td>
</tr>
<tr>
<td>Nuclear</td>
<td>7,081</td>
<td>12,299</td>
<td>12,299</td>
<td>12,299</td>
</tr>
<tr>
<td>TOTAL</td>
<td>284,493</td>
<td>353,293</td>
<td>419,600</td>
<td>538,225</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 8.42. Proyección de la generación eléctrica del Cono Sur, Escenario ECN

Fuente: Resultados de la simulación

Figura 8.43. Evolución de la matriz de generación eléctrica del Cono Sur, Escenario ECN

Fuente: Resultados de la simulación

Bajo las consideraciones propias del escenario ECN, las ERNC, incrementan considerablemente su participación en la matriz de generación eléctrica del Cono Sur, destacándose sobre todas, la energía eólica.

8.6.3 Proyección de la oferta total de energía

Tabla 8.30. Proyección de la oferta total energía en el Cono Sur, escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.c.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>374</td>
<td>352</td>
<td>356</td>
<td>333</td>
<td>-0.8%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>384</td>
<td>394</td>
<td>437</td>
<td>527</td>
<td>2.1%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>71</td>
<td>107</td>
<td>104</td>
<td>103</td>
<td>2.7%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>16</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>3.7%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>76</td>
<td>86</td>
<td>90</td>
<td>99</td>
<td>1.8%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>124</td>
<td>144</td>
<td>164</td>
<td>187</td>
<td>2.8%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>6</td>
<td>41</td>
<td>82</td>
<td>139</td>
<td>23.1%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,052</td>
<td>1,152</td>
<td>1,260</td>
<td>1,417</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La renovabilidad de la matriz de oferta total del Cono Sur, en el escenario ECN, mejora gracias a la penetración de fuentes renovables no convencionales como la eólica, la energía solar y la geotermia. También el gas natural y la biomasa ganan participación, quitándole terreno al uso de petrolíferos.
8.7 El Caribe

8.7.1 Proyección del consumo final de energía

Tabla 8.31. Proyección del consumo final de energía en El Caribe, Escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>113</td>
<td>112</td>
<td>109</td>
<td>104</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>85</td>
<td>93</td>
<td>102</td>
<td>112</td>
<td>1.9%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>3.0%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>36</td>
<td>34</td>
<td>31</td>
<td>29</td>
<td>-1.4%</td>
</tr>
<tr>
<td>Solar térmico</td>
<td>0</td>
<td>33</td>
<td>38</td>
<td>47</td>
<td>12.7%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>28</td>
<td>33</td>
<td>38</td>
<td>47</td>
<td>3.4%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>266</td>
<td>277</td>
<td>287</td>
<td>300</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 8.46. Proyección del consumo final de energía en El Caribe, Escenario ECN
El mayor uso de la electricidad y el gas natural, desplaza participación de los petrolíferos y la biomasa en la matriz de consumo final de El Caribe, en la simulación del escenario ECN.

Tabla 8.32. Proyección del consumo de electricidad en El Caribe, Escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>45,722</td>
<td>52,920</td>
<td>61,941</td>
<td>75,171</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

El consumo de electricidad en El Caribe, se incrementa en 64% en el período de proyección, bajo las premisas del escenario ECN.
8.7.2 Proyección de la generación eléctrica

Tabla 8.33. Cronogramas de instalación/retiro de capacidad instalada (MW) en El Caribe, Escenario ECN

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>0</td>
<td>114</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>40</td>
</tr>
<tr>
<td>2017</td>
<td>4</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>2018</td>
<td>4</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>115</td>
<td>0</td>
<td>198</td>
<td>106</td>
</tr>
<tr>
<td>2019</td>
<td>4</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>491</td>
<td>100</td>
</tr>
<tr>
<td>2020</td>
<td>27</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>0</td>
<td>135</td>
<td>102</td>
</tr>
<tr>
<td>2021</td>
<td>169</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>130</td>
<td>0</td>
<td>215</td>
<td>100</td>
</tr>
<tr>
<td>2022</td>
<td>29</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2023</td>
<td>100</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2024</td>
<td>100</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2025</td>
<td>100</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2026</td>
<td>100</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2027</td>
<td>254</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2028</td>
<td>200</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2029</td>
<td>200</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2030</td>
<td>200</td>
<td>400</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.

Figura 8.49. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de El Caribe, Escenario ECN

Tabla 8.34. Proyección de la capacidad instalada en El Caribe, Escenario ECN (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>800</td>
<td>841</td>
<td>1,410</td>
<td>2,364</td>
</tr>
<tr>
<td>Gas natural</td>
<td>4,088</td>
<td>5,802</td>
<td>7,802</td>
<td>9,802</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>8,374</td>
<td>8,674</td>
<td>8,674</td>
<td>8,674</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Biomasa</td>
<td>233</td>
<td>658</td>
<td>1,388</td>
<td>2,138</td>
</tr>
<tr>
<td>Eólica</td>
<td>114</td>
<td>1,190</td>
<td>2,205</td>
<td>3,205</td>
</tr>
<tr>
<td>Solar</td>
<td>60</td>
<td>458</td>
<td>958</td>
<td>1,458</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14,170</td>
<td>18,124</td>
<td>22,938</td>
<td>28,142</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.
La implementación de capacidad instalada de fuentes de energía renovables y gas natural, predominan en la expansión del sistema de generación eléctrica de El Caribe, en el escenario ECN.

Figura 8.50. Capacidad instalada de generación eléctrica de El Caribe, Escenario ECN

Fuente: Elaboración propia en base a los planes de expansión de los países.

Tabla 8.35. Proyección de la generación de electricidad en El Caribe, escenario ECN (GWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>2,398</td>
<td>3,684</td>
<td>6,176</td>
<td>10,354</td>
</tr>
<tr>
<td>Gas natural</td>
<td>22,039</td>
<td>40,663</td>
<td>43,256</td>
<td>43,341</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>25,674</td>
<td>5,347</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>2,696</td>
<td>3,067</td>
<td>3,067</td>
<td>3,067</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,573</td>
<td>4,437</td>
<td>9,356</td>
<td>14,410</td>
</tr>
<tr>
<td>Eólica</td>
<td>308</td>
<td>4,171</td>
<td>7,728</td>
<td>11,232</td>
</tr>
<tr>
<td>Solar</td>
<td>81</td>
<td>802</td>
<td>1,678</td>
<td>2,554</td>
</tr>
<tr>
<td>TOTAL</td>
<td>54,769</td>
<td>62,171</td>
<td>71,261</td>
<td>84,958</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 8.51. Proyección de la generación eléctrica de El Caribe, Escenario ECN

La matriz de generación eléctrica de El Caribe, en el escenario ECN, pasa a ser dependiente en más del 50% del gas natural, mientras que cerca del otro 50%, les corresponde a fuentes de energía renovable, como la hidráulica, la biomasa, la eólica y la solar.

8.7.3 Proyección de la oferta total de energía

Tabla 8.36. Proyección de la oferta total energía en El Caribe, escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.c.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>150</td>
<td>116</td>
<td>104</td>
<td>98</td>
<td>-2.8%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>338</td>
<td>175</td>
<td>189</td>
<td>201</td>
<td>2.5%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>1.9%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>10.2%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>47</td>
<td>56</td>
<td>66</td>
<td>74</td>
<td>3.0%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>0.2</td>
<td>3.5</td>
<td>7.2</td>
<td>11</td>
<td>29.0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>347</td>
<td>364</td>
<td>381</td>
<td>403</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La renovabilidad de la matriz de oferta total del Cono Sur, en el escenario ECN, mejora gracias a la penetración de fuentes renovables como la biomasa, la hidráulica, la eólica, la solar y la geotermia. También el gas natural gana participación, quitándole terreno al uso de petrolíferos.
8.8 América Latina y El Caribe (ALC)

8.8.1 Proyección del consumo final de energía

Tabla 8.37. Proyección del consumo final de energía en ALC, Escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>2,261</td>
<td>2,472</td>
<td>2,593</td>
<td>2,482</td>
<td>0.6%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>590</td>
<td>615</td>
<td>647</td>
<td>709</td>
<td>1.2%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>174</td>
<td>199</td>
<td>211</td>
<td>213</td>
<td>1.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>767</td>
<td>815</td>
<td>840</td>
<td>839</td>
<td>0.6%</td>
</tr>
<tr>
<td>Solar térmico</td>
<td>0</td>
<td>23</td>
<td>71</td>
<td>117</td>
<td>17.6%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>784</td>
<td>918</td>
<td>1,104</td>
<td>1,559</td>
<td>4.7%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4,576</td>
<td>5,042</td>
<td>5,467</td>
<td>5,919</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 8.55. Proyección del consumo final de energía en ALC, escenario ECN

Figura 8.56. Evolución de la matriz de consumo final de energía en ALC, Escenario ECN

Fuente: Resultados de la simulación
En el escenario ECN, la matriz de consumo final de energía en ALC, evoluciona presentando una muy evidente penetración de electricidad, desplazando el uso de hidrocarburos y biomasa, los cuales disminuyen drasticamente su participación porcentual a lo largo del período de proyección.

Tabla 8.38. Proyección del consumo de electricidad de ALC, Escenario ECN (TWh)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricidad</td>
<td>1,265</td>
<td>1,482</td>
<td>1,782</td>
<td>2,517</td>
<td>4.7%</td>
</tr>
</tbody>
</table>

Figura 8.57. Consumo total de electricidad de ALC, todos los escenarios

La región de ALC, presenta un acelerado crecimiento del consumo de electricidad, principalmente en los 5 últimos años del período de proyección, debido a la mayor electrificación de usos finales en los principales sectores de consumo de las diferentes subregiones, simulada como una medida de eficiencia energética en el escenario ECN.

8.8.2 Proyección de la generación eléctrica

Tabla 8.39. Cronogramas de instalación/retiro de capacidad instalada (MW) en ALC, Escenario ECN

<table>
<thead>
<tr>
<th>Año</th>
<th>Hidro</th>
<th>Gas Natural</th>
<th>Diésel / Fuel</th>
<th>Carbón mineral</th>
<th>Biomasa</th>
<th>Geotérmica</th>
<th>Eólica</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>4,763</td>
<td>5,025</td>
<td>-2,939</td>
<td>1,394</td>
<td>676</td>
<td>48</td>
<td>5,863</td>
<td>1,715</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>7,996</td>
<td>4,716</td>
<td>-132</td>
<td>0</td>
<td>1,725</td>
<td>301</td>
<td>5,127</td>
<td>2,306</td>
<td>745</td>
</tr>
<tr>
<td>2018</td>
<td>9,576</td>
<td>6,114</td>
<td>-1,641</td>
<td>0</td>
<td>1,387</td>
<td>245</td>
<td>6,104</td>
<td>6,086</td>
<td>4,286</td>
</tr>
<tr>
<td>2019</td>
<td>5,250</td>
<td>4,627</td>
<td>-3,211</td>
<td>-1,671</td>
<td>255</td>
<td>4,602</td>
<td>3,363</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>2,071</td>
<td>3,755</td>
<td>-2,236</td>
<td>0</td>
<td>1,006</td>
<td>170</td>
<td>4,553</td>
<td>3,949</td>
<td>0</td>
</tr>
<tr>
<td>2021</td>
<td>2,221</td>
<td>856</td>
<td>-320</td>
<td>0</td>
<td>1,860</td>
<td>233</td>
<td>4,931</td>
<td>2,805</td>
<td>0</td>
</tr>
<tr>
<td>2022</td>
<td>4,730</td>
<td>1,796</td>
<td>-921</td>
<td>0</td>
<td>1,482</td>
<td>250</td>
<td>5,410</td>
<td>2,895</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>3,964</td>
<td>4,215</td>
<td>-1,058</td>
<td>0</td>
<td>1,453</td>
<td>317</td>
<td>4,822</td>
<td>2,860</td>
<td>0</td>
</tr>
<tr>
<td>2024</td>
<td>3,522</td>
<td>3,755</td>
<td>-592</td>
<td>0</td>
<td>3,010</td>
<td>316</td>
<td>5,174</td>
<td>2,720</td>
<td>0</td>
</tr>
<tr>
<td>2025</td>
<td>5,944</td>
<td>3,693</td>
<td>-20</td>
<td>0</td>
<td>2,396</td>
<td>733</td>
<td>6,191</td>
<td>3,687</td>
<td>0</td>
</tr>
<tr>
<td>2026</td>
<td>6,452</td>
<td>4,169</td>
<td>-125</td>
<td>0</td>
<td>2,244</td>
<td>730</td>
<td>6,326</td>
<td>3,270</td>
<td>1,405</td>
</tr>
<tr>
<td>2027</td>
<td>6,932</td>
<td>3,192</td>
<td>-521</td>
<td>0</td>
<td>2,980</td>
<td>910</td>
<td>7,313</td>
<td>4,252</td>
<td>0</td>
</tr>
<tr>
<td>2028</td>
<td>7,361</td>
<td>6,403</td>
<td>-135</td>
<td>0</td>
<td>3,900</td>
<td>930</td>
<td>8,900</td>
<td>5,350</td>
<td>1,360</td>
</tr>
<tr>
<td>2029</td>
<td>9,800</td>
<td>7,200</td>
<td>0</td>
<td>3,900</td>
<td>930</td>
<td>9,900</td>
<td>5,850</td>
<td>1,361</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>10,000</td>
<td>8,200</td>
<td>0</td>
<td>1,700</td>
<td>4,000</td>
<td>930</td>
<td>10,300</td>
<td>6,350</td>
<td>1,361</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.
Figura 8.58. Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de ALC, Escenario ECN

![Cronograma de instalación/retiro de capacidad instalada de generación eléctrica de ALC, Escenario ECN](image)

Fuente: Elaboración propia en base a los planes de expansión de los países.

Tabla 8.40. Proyección de la capacidad instalada en ALC, Escenario ECN (MW)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>162,241</td>
<td>192,730</td>
<td>212,271</td>
<td>252,507</td>
</tr>
<tr>
<td>Gas natural</td>
<td>67,798</td>
<td>91,495</td>
<td>106,005</td>
<td>135,370</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>45,260</td>
<td>34,971</td>
<td>33,374</td>
<td>33,069</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>20,736</td>
<td>22,114</td>
<td>22,114</td>
<td>17,775</td>
</tr>
<tr>
<td>Biomasa</td>
<td>19,833</td>
<td>25,344</td>
<td>35,544</td>
<td>53,070</td>
</tr>
<tr>
<td>Geotermia</td>
<td>1,484</td>
<td>2,503</td>
<td>4,352</td>
<td>8,782</td>
</tr>
<tr>
<td>Eólica</td>
<td>13,099</td>
<td>39,348</td>
<td>66,078</td>
<td>109,117</td>
</tr>
<tr>
<td>Solar</td>
<td>2,091</td>
<td>17,710</td>
<td>32,676</td>
<td>57,748</td>
</tr>
<tr>
<td>Nuclear</td>
<td>4,510</td>
<td>5,255</td>
<td>5,255</td>
<td>9,381</td>
</tr>
<tr>
<td>TOTAL</td>
<td>337,051</td>
<td>431,469</td>
<td>517,670</td>
<td>676,819</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia en base a los planes de expansión de los países.
En la expansión de la capacidad instalada en ALC, bajo las premisas del escenario ECN, las ERNC como la biomasa, la eólica y la solar, cobran gran relevancia en el sistema de generación eléctrica de la región de ALC, destacándose la capacidad eólica, que pasa a ser la tercera tecnología en importancia en el año 2030.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>686,983</td>
<td>890,701</td>
<td>1,005,480</td>
<td>1,266,606</td>
</tr>
<tr>
<td>Gas natural</td>
<td>427,355</td>
<td>452,264</td>
<td>471,704</td>
<td>707,327</td>
</tr>
<tr>
<td>Diésel-Fuel</td>
<td>178,285</td>
<td>8,386</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>112,917</td>
<td>138,661</td>
<td>138,661</td>
<td>111,433</td>
</tr>
<tr>
<td>Biomasa</td>
<td>69,732</td>
<td>98,813</td>
<td>144,803</td>
<td>216,250</td>
</tr>
<tr>
<td>Geotermia</td>
<td>11,861</td>
<td>19,062</td>
<td>33,380</td>
<td>67,431</td>
</tr>
<tr>
<td>Eólica</td>
<td>39,521</td>
<td>139,764</td>
<td>239,980</td>
<td>404,047</td>
</tr>
<tr>
<td>Solar</td>
<td>5,763</td>
<td>36,890</td>
<td>68,367</td>
<td>121,053</td>
</tr>
<tr>
<td>Nuclear</td>
<td>33,277</td>
<td>38,551</td>
<td>38,551</td>
<td>69,697</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,565,695</td>
<td>1,823,092</td>
<td>2,140,926</td>
<td>2,963,845</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
En el escenario ECN, la eliminación en el uso de petróleos para la generación eléctrica, es compensado principalmente por la mayor participación de las ERNC. Cabe destacar que, aunque existe una implementación importante de nuevas hidroeléctricas y centrales a gas natural, estas fuentes disminuyen su participación porcentual en la matriz de generación regional.

8.8.3 Proyección de la oferta total de energía

Tabla 8.42. Proyección de la oferta total energía en ALC, escenario ECN (Mbep)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y derivados</td>
<td>2,634</td>
<td>2,736</td>
<td>2,905</td>
<td>2,852</td>
<td>0.5%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>1,895</td>
<td>1,998</td>
<td>2,093</td>
<td>2,557</td>
<td>2.0%</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>369</td>
<td>435</td>
<td>443</td>
<td>396</td>
<td>0.5%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>64</td>
<td>76</td>
<td>76</td>
<td>133</td>
<td>5.0%</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>471</td>
<td>600</td>
<td>480</td>
<td>856</td>
<td>4.1%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>1,041</td>
<td>1,208</td>
<td>1,396</td>
<td>1,590</td>
<td>2.9%</td>
</tr>
<tr>
<td>Otras renovables</td>
<td>57</td>
<td>182</td>
<td>345</td>
<td>608</td>
<td>17.1%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6,532</td>
<td>7,235</td>
<td>7,937</td>
<td>8,992</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
En la matriz de oferta total de energía de ALC, en el escenario ECN, las energías renovables, incrementan de manera muy importante su participación, mermando la correspondiente a los hidrocarburos y el carbón mineral.
9. Análisis de sensibilidad del escenario ECN, a los efectos del cambio climático
9. Análisis de sensibilidad del escenario ECN, a los efectos del cambio climático

9.1 Consideraciones generales

Como se mencionó en la sección introductoria, el período de proyección del presente estudio, es demasiado corto como para esperar que exista un impacto relevante del cambio climático, sobre la demanda de electricidad y disponibilidad de hidroenergía. Sin embargo, para poner a prueba la robustez del escenario ECN propuesto, en este capítulo se simuló una eventual manifestación prematura del cambio climático sobre las mencionadas variables. Para definir la magnitud del efecto del cambio climático en las diferentes subregiones, se utilizó como referencia, la información del artículo “Power-generation system vulnerability and adaptation to changes in climate and water resources”, publicado por Nature Climate Change Journal en el año 2016 [65], donde se presentan estimaciones de la variación de los caudales hídricos para el año 2050, correspondientes al escenario más drástico de concentración de emisiones de GEI, como es el RCP8.5 formulado por el IPCC.

En la Figura 9.1, se puede apreciar de forma gráfica la distribución geográfica de los efectos del CC en los caudales hídricos para el Continente Americano.

Figura 9.1. Variación de las escorrentías al año 2050, correspondiente al escenario climático RCP8.5.

Como se puede apreciar en la figura anterior, las subregiones más afectadas por el CC, serían México y El Cono Sur. En la Subregión Andina, se puede notar que Venezuela, Bolivia y una parte de Perú, se ven afectadas en ciertas zonas, sin embargo, en otras zonas de la subregión, las variaciones en los caudales son positivas, lo que contrarrestaría en cierta forma la afectación a nivel subregional. En cuanto a América Central, el estudio específico realizado por OLADE, para los países de esta subregión [21], mostró que las afectaciones por el CC podrían empezar a manifestarse más allá del 2030, por lo que se consideraría un riesgo bajo, durante el período de estudio; y respecto a El Caribe, dada la baja participación de la hidroelectricidad, un efecto en este recurso resultaría prácticamente irrelevante.

Fuente: (Michelle T. H. van Vliet et al., 2016)
Con base en los resultados de variación de las escorrentías arrojados en el escenario climático RCP8.5, como hipótesis del efecto del cambio climático sobre los sectores eléctricos de cada una de las subregiones analizadas se consideró un porcentaje de disminución del factor de planta de las hidroeléctricas para el año 2030, respecto a los factores utilizados en los escenarios EPA y ECN. Dicha disminución se distribuye de manera progresiva durante el período de estudio, asignándosele un valor al 2030 del 10% para las subregiones con mayor afectación del cambio climático y un 5% para las de menor afectación. Si bien los porcentajes de afectación que se muestran en la Figura 9.1, son en algunas zonas geográficas mucho mayores, estos están referidos al año 2050, por lo que para el año 2030 se consideró un rango mínimo de afectación.

Es razonable pensar que un incremento en la temperatura ambiental asociado al cambio climático, podría tener consecuencias sobre el consumo de electricidad, ya sea debido a un mayor consumo energético de los equipos de refrigeración y aire acondicionado, como a un menor uso de los equipos de calefacción. Así, la variación de la demanda de electricidad debido al CC dependerá del aumento de temperatura global y de la estacionalidad climática de cada subregión.

Dado que el escenario RCP8.5, prevé un aumento de la temperatura de 2° C al año 2100 y de 1 °C al año 2050 (con respecto a la temperatura del año 1900), se puede advertir que el incremento de temperatura sigue un patrón exponencial, lo cual supone que en los 15 años de proyección (2015-2030), el incremento de temperatura para el mencionado escenario climático, podría ser de 0.35 °C. Por otra parte, para la elasticidad de la demanda eléctrica respecto a la variación de temperatura, se asumieron los valores considerados en el estudio realizado por OLADE en América Central [21], que fueron de 1.5% y 2.5% dependiendo del país. Con estos valores de referencia se cuantificaron los efectos del CC sobre la oferta hidroeléctrica y la demanda de electricidad al año 2030 que se indican en la tabla 9.1.

Tabla 9.1. Porcentajes de variación considerados por efecto del cambio climático

<table>
<thead>
<tr>
<th>Subregión</th>
<th>Factor de planta hidroeléctrico, año 2030</th>
<th>Elasticidad Demanda de Electricidad / Incremento de temperatura</th>
<th>Incremento de temperatura global, período 2015-2030</th>
<th>Consumo de electricidad industrial, residencial y comercial, año 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasil</td>
<td>-5%</td>
<td>2.5%</td>
<td>0.35°C</td>
<td>+0.88%</td>
</tr>
<tr>
<td>México</td>
<td>-10%</td>
<td>2.5%</td>
<td>0.35°C</td>
<td>+0.88%</td>
</tr>
<tr>
<td>América Central</td>
<td>-5%</td>
<td>2.5%</td>
<td>0.35°C</td>
<td>+0.88%</td>
</tr>
<tr>
<td>Subregión Andina</td>
<td>-5%</td>
<td>1.5%</td>
<td>0.35°C</td>
<td>+0.53%</td>
</tr>
<tr>
<td>Cono Sur</td>
<td>-10%</td>
<td>0%</td>
<td>0.35°C</td>
<td>0%</td>
</tr>
<tr>
<td>El Caribe</td>
<td>-5%</td>
<td>2.5%</td>
<td>0.35°C</td>
<td>+0.88%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

6 El Factor de Planta de una central eléctrica, se define como la división entre la energía realmente producida en un periodo de tiempo determinado y la energía teórica que produciría la central operando de manera continua, a capacidad nominal, durante el mismo periodo.

7 Es difícil establecer con precisión la variación en el tiempo de los caudales o del factor de planta de las centrales hidroeléctricas, para esto habría que realizar para cada subregión un estudio similar al que OLADE realizó en América Central [21] y está realizando en la Subregión Andina donde se analiza una gran cantidad de variables hidrometeorológicas. Los valores de afectación considerados es este estudio corresponderían a un rango mínimo de afectación.

8 Para la subregión del Cono Sur, debido a la marcada estacionalidad climática, se asumió que el eventual incremento de demanda eléctrica para refrigeración y aire acondicionado en las estaciones cálidas, se contrarrestaría con la menor demanda de calefacción en las estaciones frías.
Al igual que la reducción en el factor de panta de las hidroeléctricas, el efecto considerado sobre la demanda de electricidad se distribuye progresivamente en el período de proyección del escenario ECN. Es decir, que evoluciona desde su valor original en el año 2017 hasta el valor afectado por el CC en año 2030.

Cabe precisar que la simulación de los mencionados efectos del CC, se aplicaron tanto al escenario ECN propuesto, como al escenario de línea base BAU, generándose los escenarios de sensibilidad NDCs(RCP8.5) y BAU(RCP8.5), respectivamente. Al escenario EPA no se le aplicó dicha sensibilidad, porque corresponde a las proyecciones oficiales de los países contenidas en sus planes de expansión y por lo tanto se asume que su robustez fue validada al momento de elaborar dichos planes.

En la simulación de los escenarios BAU y BAU(RCP 8.5), no se usó la variable de factor de planta para el cálculo de la generación eléctrica, ya que la generación proyectada de cada tecnología, no obedece a una política de priorización en el despacho, sino que mantiene su participación porcentual en la matriz del año base. Por tanto, la diferencia en la generación hidroeléctrica entre dichos escenarios se debe exclusivamente a la diferencia en la proyección de la demanda interna de electricidad. Sin embargo, el factor de planta sí intervino en el cálculo de la capacidad instalada necesaria para cubrir dicha generación.

Una afectación eventual del rendimiento de las centrales térmicas por causa del aumento de la temperatura global, se descartó por considerarse irrelevante en el horizonte del estudio.

Se mantiene invariable el cronograma de expansión de la generación eléctrica, propuesto en el escenario ECN, para la simulación del escenario ECN(RCP8.5).

Con las hipótesis expuestas, se presenta a continuación los resultados más relevantes del análisis de sensibilidad a los efectos del cambio climático.

9.2 Brasil

9.2.1 Variación en el consumo total de electricidad

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>491,255</td>
<td>593,026</td>
<td>716,277</td>
<td>865,616</td>
<td>3.8%</td>
</tr>
<tr>
<td>BAU (RCP8.5)</td>
<td>491,255</td>
<td>594,615</td>
<td>720,108</td>
<td>872,545</td>
<td>3.9%</td>
</tr>
<tr>
<td>ECN</td>
<td>491,255</td>
<td>580,500</td>
<td>706,146</td>
<td>969,997</td>
<td>4.6%</td>
</tr>
<tr>
<td>ECN (RCP8.5)</td>
<td>491,255</td>
<td>581,567</td>
<td>709,436</td>
<td>976,226</td>
<td>4.7%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
9.2.2 Variación en la generación hidroeléctrica

Tabla 9.3. Variación en la generación hidroeléctrica de Brasil, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th>Escenario BAU</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>359,975</td>
<td>434,567</td>
<td>524,885</td>
<td>634,319</td>
</tr>
<tr>
<td>Escenario BAU (RCP8.5)</td>
<td>359,975</td>
<td>435,731</td>
<td>527,691</td>
<td>639,396</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>359,975</td>
<td>471,718</td>
<td>513,513</td>
<td>646,782</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>359,975</td>
<td>466,275</td>
<td>497,713</td>
<td>614,443</td>
</tr>
</tbody>
</table>

9.3 México

9.3.1 Variación en el consumo total de electricidad

Tabla 9.4. Variación del consumo total de electricidad de México, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>248,895</td>
<td>300,182</td>
<td>362,123</td>
<td>436,943</td>
<td>3.8%</td>
</tr>
<tr>
<td>Escenario BAU (RCP8.5)</td>
<td>248,895</td>
<td>300,994</td>
<td>364,089</td>
<td>440,511</td>
<td>3.9%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>248,895</td>
<td>291,779</td>
<td>351,474</td>
<td>496,019</td>
<td>4.7%</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>248,895</td>
<td>292,319</td>
<td>353,099</td>
<td>499,031</td>
<td>4.7%</td>
</tr>
</tbody>
</table>
9.3.2 Variación en la generación hidroeléctrica

Tabla 9.5. Variación de la generación hidroeléctrica de México, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>30,955</td>
<td>37,330</td>
<td>45,033</td>
<td>54,337</td>
</tr>
<tr>
<td>Escenario BAU (RCP 8.5)</td>
<td>30,955</td>
<td>37,431</td>
<td>45,277</td>
<td>54,781</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>30,955</td>
<td>42,787</td>
<td>45,836</td>
<td>52,027</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>30,955</td>
<td>41,565</td>
<td>42,889</td>
<td>46,825</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
9.4 América Central

9.4.1 Variación del consumo total de electricidad

Tabla 9.6. Variación del consumo total de electricidad de América Central, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>25,195</td>
<td>29,494</td>
<td>34,560</td>
<td>40,535</td>
</tr>
<tr>
<td>BAU (RCP8.5)</td>
<td>25,195</td>
<td>29,580</td>
<td>34,761</td>
<td>40,889</td>
</tr>
<tr>
<td>ECN</td>
<td>25,195</td>
<td>33,751</td>
<td>39,141</td>
<td>50,153</td>
</tr>
<tr>
<td>ECN (RCP8.5)</td>
<td>25,195</td>
<td>33,362</td>
<td>37,936</td>
<td>47,645</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

9.4.2 Variación de la generación hidroeléctrica

Tabla 9.7. Variación de la generación hidroeléctrica de América Central, debido al CC (GWh)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>22,701</td>
<td>27,070</td>
<td>32,141</td>
<td>38,111</td>
</tr>
<tr>
<td>BAU (RCP8.5)</td>
<td>22,701</td>
<td>27,160</td>
<td>32,341</td>
<td>38,585</td>
</tr>
<tr>
<td>ECN</td>
<td>22,701</td>
<td>27,638</td>
<td>32,938</td>
<td>43,938</td>
</tr>
<tr>
<td>ECN (RCP8.5)</td>
<td>22,701</td>
<td>27,244</td>
<td>32,644</td>
<td>43,344</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
9.5 Subregión Andina

9.5.1 Variación del consumo total de electricidad

Tabla 9.8. Variación del consumo total de electricidad de la Subregión Andina, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.c.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>215,097</td>
<td>259,898</td>
<td>316,389</td>
<td>387,884</td>
<td>4%</td>
</tr>
<tr>
<td>Escenario BAU (RCP 8.5)</td>
<td>215,097</td>
<td>260,299</td>
<td>317,354</td>
<td>389,640</td>
<td>4%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>215,097</td>
<td>248,928</td>
<td>294,494</td>
<td>488,880</td>
<td>5.6%</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>215,097</td>
<td>249,191</td>
<td>295,268</td>
<td>490,300</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
9.5.2 Variación de la generación hidroeléctrica

Tabla 9.9. Variación de la generación hidroeléctrica de la Subregión Andina, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>152,886</td>
<td>184,859</td>
<td>225,039</td>
<td>275,892</td>
</tr>
<tr>
<td>BAU (RCP8.5)</td>
<td>152,886</td>
<td>185,144</td>
<td>225,726</td>
<td>277,141</td>
</tr>
<tr>
<td>ECN</td>
<td>152,886</td>
<td>198,181</td>
<td>249,141</td>
<td>333,716</td>
</tr>
<tr>
<td>ECN (RCP 8.5)</td>
<td>152,886</td>
<td>195,895</td>
<td>241,475</td>
<td>317,030</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 9.9. Variación de la generación hidroeléctrica de la Subregión Andina, por efecto del CC

9.6 Cono Sur

9.6.1 Variación del consumo total de electricidad

De acuerdo a lo indicado en las consideraciones generales del presente capítulo, la subregión del Cono Sur no presenta variación del consumo anual de electricidad por efecto del cambio climático.

9.6.2 Variación de la generación hidroeléctrica

Tabla 9.10. Variación de la generación hidroeléctrica del Cono Sur, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>115,574</td>
<td>142,967</td>
<td>171,463</td>
<td>205,879</td>
</tr>
<tr>
<td>BAU (RCP8.5)</td>
<td>115,574</td>
<td>142,967</td>
<td>171,463</td>
<td>205,879</td>
</tr>
<tr>
<td>ECN</td>
<td>115,574</td>
<td>140,579</td>
<td>151,673</td>
<td>173,573</td>
</tr>
<tr>
<td>ECN (RCP 8.5)</td>
<td>115,574</td>
<td>137,335</td>
<td>142,340</td>
<td>156,216</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
9.7 El Caribe

9.7.1 Variación del consumo total de electricidad

Tabla 9.11. Variación del consumo total de electricidad de El Caribe, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>45,722</td>
<td>54,961</td>
<td>66,436</td>
<td>80,745</td>
<td>3.9%</td>
</tr>
<tr>
<td>Escenario BAU (RCP 8.5)</td>
<td>45,722</td>
<td>55,114</td>
<td>66,805</td>
<td>81,416</td>
<td>3.9%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>45,722</td>
<td>52,920</td>
<td>61,941</td>
<td>75,171</td>
<td>3.4%</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>45,722</td>
<td>53,021</td>
<td>62,249</td>
<td>75,755</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
9.7.2 Varianción de la generación hidroeléctrica

Tabla 9.12. Generación hidroeléctrica de El Caribe, Escenario ECC vs. Escenarios BAU y EPA (GWh)

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>2,398</td>
<td>2,882</td>
<td>3,484</td>
<td>4,235</td>
</tr>
<tr>
<td>Escenario BAU (RCP8.5)</td>
<td>2,398</td>
<td>2,890</td>
<td>3,503</td>
<td>4,270</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>2,398</td>
<td>3,684</td>
<td>6,176</td>
<td>10,354</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>2,398</td>
<td>3,641</td>
<td>5,986</td>
<td>9,837</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 9.12. Varianción de la generación hidroeléctrica de El Caribe, por efecto del CC

9.8 América Latina y El Caribe (ALC)

9.8.1 Variación del consumo total de electricidad

Tabla 9.13. Varianción del consumo total de electricidad de ALC, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>1,264,966</td>
<td>1,523,104</td>
<td>1,837,631</td>
<td>2,221,463</td>
<td>3.8%</td>
</tr>
<tr>
<td>Escenario BAU (RCP8.5)</td>
<td>1,264,966</td>
<td>1,526,208</td>
<td>1,845,112</td>
<td>2,235,006</td>
<td>3.9%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>1,264,966</td>
<td>1,482,099</td>
<td>1,781,692</td>
<td>2,516,663</td>
<td>4.7%</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>1,264,966</td>
<td>1,484,193</td>
<td>1,787,999</td>
<td>2,528,451</td>
<td>4.7%</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Como se pudo observar en las tablas y gráficos de variación del consumo eléctrico, por efecto del cambio climático de cada una de las subregiones analizadas, las diferencias entre los escenarios BAU y ECN, con sus respectivos escenarios de sensibilidad BAU(RCP8.5) y ECN(RCP8.5) son ínfimas, por lo que, como era de esperarse, también a nivel regional de ALC, ocurre lo mismo, con porcentajes de variación al 2030 de 0.6% y 0.5% respectivamente, para el año 2030.

Estos resultados ponen de manifiesto que, en principio, el posible incremento de 0,35°C en las temperaturas no supondría un cambio en los hábitos de consumo de energía. Por tanto, el escenario ECN no quedaría afectado en lo referente al consumo de energía.

9.8.2 Variación de la generación hidroeléctrica

Tabla 9.14. Variación de la generación hidroeléctrica de ALC, por efecto del CC (GWh)

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>686,983</td>
<td>832,100</td>
<td>1,004,464</td>
<td>1,215,196</td>
</tr>
<tr>
<td>Escenario BAU (RCP8.5)</td>
<td>686,983</td>
<td>833,743</td>
<td>1,008,422</td>
<td>1,222,355</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>686,983</td>
<td>890,701</td>
<td>1,005,480</td>
<td>1,266,606</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>686,983</td>
<td>878,072</td>
<td>968,339</td>
<td>1,191,996</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
La diferencia en la generación hidroeléctrica, por efecto del cambio climático entre los escenarios BAU y BAU(RCP8.5) es muy marginal (0.6% al año 2030) debido a que, por el tipo de simulación de dichos escenarios, los resultados de generación eléctrica, no dependen de los factores de planta, sino solamente de la demanda de electricidad.

Sin embargo, la diferencia entre los escenarios ECN y ECN(RCP8.5) para la región de ALC representa una disminución de aproximadamente el 6% para el año 2030, lo que ya se puede considerar una cifra relevante. Esta disminución en la hidroelectricidad, como se verá a continuación, podría afectar de forma ligeramente negativa en el porcentaje de generación eléctrica cubierto por energías renovables. Este fenómeno pone a prueba la robustez del escenario ECN, lo cual formará parte del análisis realizado en el capítulo siguiente.
10. Análisis comparativo de los escenarios simulados, mediante indicadores energéticos y ambientales.
10. Análisis comparativo de los escenarios simulados, mediante indicadores energéticos y ambientales.

10.1 Consideraciones generales

Una vez presentados en los capítulos anteriores los resultados energéticos, individuales de la simulación de los diferentes escenarios y con el fin de mostrar de manera más explícita, el efecto de las premisas utilizadas en cada uno de ellos, sobre el estado de la matriz energética en el horizonte de estudio, en el presente capítulo se analizan las diferencias más relevantes, entre dichos escenarios, mediante indicadores comparativos de tipo energético y ambiental. Los indicadores de tipo ambiental se refieren a las emisiones de CO2e y los porcentajes de reducción respecto al escenario de línea base BAU, tanto para la matriz de oferta total de energía, como para la matriz de generación eléctrica.

Para el cálculo de emisiones de CO2e, se utilizaron los factores de emisión propuestos por el IPCC, para el método de tecnologías (revisión 2006), que se recopilan en el Sistema de Información Energética de OLADE (SieLAC) y que se muestran en el Anexo V.

10.2 Brasil

10.2.1 Proyección y estructura del consumo final de energía

Figura 10.1 Proyección del consumo final de energía de Brasil, todos los escenarios

![Diagrama de consumo final de energía en Brasil]

Para Brasil, el escenario EPA genera un ahorro en el consumo total de energía del 3% respecto al escenario BAU, mientras que el escenario ECN, permite un ahorro del 14% respecto al escenario BAU y del 11% respecto al escenario EPA.

Fuente: Resultados de la simulación
Los escenarios BAU y EPA, tienen aproximadamente la misma estructura en la matriz de consumo final en el año 2030, mientras que en el escenario ECN, reduce de manera importante la participación de los hidrocarburos en dicha matriz.

10.2.2 Proyección y estructura de la generación eléctrica

El escenario EPA, consigue un ahorro del 4% en la generación eléctrica de Brasil, respecto al escenario BAU, mientras que, en el escenario ECN, debido a la mayor penetración de la electricidad en los sectores de consumo final, la generación se incrementa en un 5%, respecto a la misma referencia.
Si bien Brasil ya ostenta en el año base un índice de renovabilidad de la generación eléctrica, bastante alto, este indicador mejora sustancialmente con el escenario de políticas actuales EPA y aún más con el escenario propuesto ECN, aunque con la sensibilidad a los efectos del cambio climático (escenario ECN(RCP8.5)), principalmente debido al efecto negativo sobre la generación hidroeléctrica (ver Capítulo 9), pierde algunos puntos porcentuales en dicho índice.

10.2.3 Proyección y estructura de la oferta total de energía

Con el escenario de políticas actuales, Brasil consigue un ahorro en la oferta total de energía de solamente el 1% respecto al escenario BAU, sin embargo, dicho ahorro alcanza el 11% con el escenario ECN propuesto.
Aunque con el escenario de políticas actuales (EPA), el índice de renovabilidad de la oferta total de energía, se mantiene, respecto al escenario BAU, este indicador mejora en el escenario ECN, acercándose al 50%, aunque pierde un punto porcentual por la sensibilidad al cambio climático.

10.2.4 Emisiones de CO2e de la generación eléctrica y porcentajes de reducción

| Tabla 10.1. Emisiones de CO2e de la generación eléctrica de Brasil, todos los escenarios (kt) |
|---|---|---|---|---|---|
| Año \ Escenario | BAU | BAU(RCP8.5) | EPA | ECN | ECN(RCP8.5) |
| 2015 | 43,972 | 43,972 | 43,972 | 43,972 | 43,972 |
| 2016 | 45,659 | 45,684 | 33,936 | 33,936 | 33,936 |
| 2017 | 47,411 | 47,461 | 26,537 | 26,445 | 26,445 |
| 2018 | 49,230 | 49,309 | 22,998 | 21,170 | 21,741 |
| 2019 | 51,120 | 51,230 | 23,028 | 18,841 | 20,028 |
| 2020 | 53,084 | 53,226 | 27,500 | 20,484 | 22,276 |
| 2021 | 55,125 | 55,302 | 28,895 | 20,903 | 23,313 |
| 2022 | 57,245 | 57,460 | 32,328 | 21,207 | 24,257 |
| 2023 | 59,448 | 59,703 | 35,947 | 22,162 | 25,867 |
| 2024 | 61,738 | 62,035 | 34,804 | 19,004 | 23,514 |
| 2025 | 64,117 | 64,460 | 38,516 | 21,263 | 26,502 |
| 2026 | 66,589 | 66,980 | 34,672 | 17,097 | 23,262 |
| 2027 | 69,158 | 69,601 | 38,320 | 20,070 | 27,081 |
| 2028 | 71,827 | 72,326 | 42,256 | 21,555 | 29,473 |
| 2029 | 74,602 | 75,159 | 41,406 | 18,459 | 27,608 |
| 2030 | 77,485 | 78,106 | 40,772 | 16,759 | 27,278 |
| TOTAL | 947,809 | 952,013 | 545,889 | 363,328 | 426,555 |

Fuente: Resultados de la simulación
Gracias a que el cronograma de expansión de la generación eléctrica que plantea Brasil para el escenario EPA, considera un incremento considerable del componente renovable, el cual se profundizó para el escenario ECN, se obtiene como resultado para ambos escenarios, valores considerables de porcentaje de reducción de emisiones, respecto al escenario BAU.

Dado el alto grado de dependencia de la hidroenergía que tiene la matriz de generación eléctrica de Brasil, se puede apreciar que, con sensibilidad al cambio climático, la variación en los porcentajes de reducción de emisiones de CO2e es también muy importante (Figura 10.8).
10.2.5 Emisiones totales de CO$_2$e de la matriz energética y porcentajes de reducción

Tabla 10.2. Emisiones de CO$_2$e de la matriz energética de Brasil, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>297,672</td>
<td>297,672</td>
<td>297,672</td>
<td>297,672</td>
<td>297,672</td>
</tr>
<tr>
<td>2017</td>
<td>316,512</td>
<td>316,570</td>
<td>292,772</td>
<td>293,644</td>
<td>293,644</td>
</tr>
<tr>
<td>2018</td>
<td>326,599</td>
<td>326,689</td>
<td>290,245</td>
<td>291,559</td>
<td>292,281</td>
</tr>
<tr>
<td>2019</td>
<td>337,148</td>
<td>337,273</td>
<td>303,841</td>
<td>293,178</td>
<td>294,677</td>
</tr>
<tr>
<td>2020</td>
<td>348,175</td>
<td>348,337</td>
<td>317,518</td>
<td>299,407</td>
<td>301,670</td>
</tr>
<tr>
<td>2021</td>
<td>359,696</td>
<td>359,898</td>
<td>327,676</td>
<td>304,109</td>
<td>307,151</td>
</tr>
<tr>
<td>2022</td>
<td>371,727</td>
<td>371,971</td>
<td>340,838</td>
<td>308,292</td>
<td>312,102</td>
</tr>
<tr>
<td>2023</td>
<td>384,285</td>
<td>384,575</td>
<td>354,393</td>
<td>313,221</td>
<td>317,867</td>
</tr>
<tr>
<td>2024</td>
<td>397,389</td>
<td>397,727</td>
<td>362,958</td>
<td>315,931</td>
<td>321,206</td>
</tr>
<tr>
<td>2025</td>
<td>411,057</td>
<td>411,448</td>
<td>377,420</td>
<td>318,536</td>
<td>323,150</td>
</tr>
<tr>
<td>2026</td>
<td>425,310</td>
<td>425,756</td>
<td>383,609</td>
<td>315,757</td>
<td>323,542</td>
</tr>
<tr>
<td>2027</td>
<td>440,169</td>
<td>440,674</td>
<td>398,845</td>
<td>321,615</td>
<td>330,467</td>
</tr>
<tr>
<td>2028</td>
<td>455,656</td>
<td>456,224</td>
<td>415,147</td>
<td>325,322</td>
<td>335,318</td>
</tr>
<tr>
<td>2029</td>
<td>471,794</td>
<td>472,428</td>
<td>425,948</td>
<td>322,213</td>
<td>333,764</td>
</tr>
<tr>
<td>2030</td>
<td>488,607</td>
<td>489,313</td>
<td>437,832</td>
<td>319,562</td>
<td>332,843</td>
</tr>
</tbody>
</table>

| TOTAL | 6,138,672 | 6,143,457 | 5,627,150 | 4,930,978 | 5,010,772 |

| t.p.a. 2030/2015 | 3.4% | 3.4% | 2.6% | 0.5% | 0.7% |

Fuente: Resultados de la simulación

Figura 10.9 Emisiones de CO$_2$e de la matriz energética de Brasil, todos los escenarios

Fuente: Resultados de la simulación
Como se indicó en el capítulo 7, Brasil no especifica en sus NDCs una meta específica de reducción de emisiones de GEIs para el sector energético, sino una meta general de reducción al año 2030, del 43% respecto a la emisiones totales del año 2005. Como se puntualizó también en ese mismo capítulo, los porcentajes de reducción obtenidos en el escenario EPA, con respecto al escenario BAU, están por debajo de las metas establecidas en los NDCs de la mayoría de países de la región y la tasa promedio de crecimiento anual de dichas emisiones en el período de proyección (2.6%), sobrepasa la esperada para el sector de la energía (1.8%), en el ejercicio realizado por el MME sobre la contribución de los diferentes sectores al cumplimiento de los NDCs. Sin embargo, bajo las premisas del escenario ECN, el porcentaje de reducción sobrepasa el 30% para el año 2030, inclusive con sensibilidad al cambio climático y además, la tasa promedio de crecimiento anual de las emisiones disminuye hasta el 0.5%, valor inferior a la máxima esperada por el MME del 1.8% para el cumplimiento de los NDCs.

Cabe resaltar también que de la reducción total de emisiones logradas en el escenario ECN, respecto al BAU (169 Mt de CO2e.), el 36% (60.7 Mt de CO2e.) corresponden al sector de generación eléctrica (ver tablas 10.1 y 10.2).
10.3 México

10.3.1 Proyección y estructura del consumo final de energía

Figura 10.11 Proyección del consumo final de energía de México, todos los escenarios

![Gráfico de consumo final de energía de México](image1)

Fuente: Resultados de la simulación

Figura 10.12 Estructura de la matriz de consumo final de energía de México, todos los escenarios

![Gráfico de matriz de consumo final de energía de México](image2)

Fuente: Resultados de la simulación

El escenario EPA, consigue para México una reducción del 3% en el consumo final de energía, respecto al escenario BAU, pero mantiene aproximadamente la misma estructura porcentual de la matriz de consumo. Sin embargo, con el escenario ECN, el ahorro en el consumo final de energía alcanza el 16% respecto al escenario BAU y del 13% respecto al escenario EPA; siendo muy notoria la reducción en la participación de petrolíferos, que son desplazados por gas natural y electricidad (figuras 10.11 y 10.12).
10.3.2 Proyección y estructura de la generación eléctrica

Figura 10.13 Proyección de la generación eléctrica de México, todos los escenarios

Fuente: Resultados de la simulación

Figura 10.14 Índice de renovabilidad de la generación eléctrica de México, todos los escenarios

Fuente: Resultados de la simulación
El escenario EPA, permite un ahorro en la generación eléctrica, en la misma proporción que disminuye el consumo de electricidad, respeto al escenario BAU (4%), mientras que en el escenario ECN, la generación se incrementa en un 10% debido a la mayor electrificación de sectores como el transporte y el industrial. Gracias a la penetración más acelerada de energías renovables, el escenario EPA duplica el índice de renovabilidad respecto al escenario BAU, sin embargo, en el escenario ECN, este indicador decrece un poco debido a la expansión del gas natural para abastecer la demanda adicional de electricidad. Se puede notar que la sensibilidad al cambio climático, afecta también a dicho indicador (figuras 10.13 y 10.14).

10.3.3 Proyección y estructura de la oferta total de energía

Figura 10.15 Proyección de la oferta total de energía de México, todos los escenarios

<table>
<thead>
<tr>
<th>Año</th>
<th>2015</th>
<th>2030 BAU</th>
<th>2030 BAU (RCP8.5)</th>
<th>2030 EPA</th>
<th>2030 ECN</th>
<th>2030 ECN (RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otras renovables</td>
<td>23</td>
<td>50</td>
<td>50</td>
<td>84</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>Biomasa</td>
<td>69</td>
<td>85</td>
<td>85</td>
<td>174</td>
<td>194</td>
<td>194</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>15</td>
<td>26</td>
<td>27</td>
<td>20</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Nuclear</td>
<td>21</td>
<td>36</td>
<td>37</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>Carbón mineral y coque</td>
<td>109</td>
<td>171</td>
<td>172</td>
<td>108</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Gas natural</td>
<td>566</td>
<td>905</td>
<td>909</td>
<td>866</td>
<td>945</td>
<td>960</td>
</tr>
<tr>
<td>Petróleo y derivados</td>
<td>580</td>
<td>778</td>
<td>779</td>
<td>656</td>
<td>469</td>
<td>465</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.382</td>
<td>2.052</td>
<td>2.059</td>
<td>1.967</td>
<td>1.898</td>
<td>1.907</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
El escenario EPA, genera un ahorro del 4% en la oferta total de energía de México, respecto al escenario BAU, incrementándose dicho ahorro hasta un 7% gracias al escenario ECN. De igual manera, mientras que el escenario EPA mejora el índice de renovabilidad de la matriz de oferta total de energía de México en 7 puntos porcentuales, respecto al escenario BAU, el escenario ECN, consigue sumar 10 puntos porcentuales adicionales a dicho indicador. La sensibilidad al cambio climático para el escenario ECN, afecta en un punto porcentual a la renovabilidad de la oferta total de energía (figuras 10.15 y 10.16).

10.3.4 Emisiones de CO₂e de la generación eléctrica y porcentajes de reducción

Tabla 10.3. Emisiones de CO₂e de la generación eléctrica de México, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año \ Escenario</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>75,930</td>
<td>75,930</td>
<td>75,930</td>
<td>75,930</td>
<td>75,930</td>
</tr>
<tr>
<td>2016</td>
<td>78,821</td>
<td>78,863</td>
<td>77,378</td>
<td>77,378</td>
<td>77,378</td>
</tr>
<tr>
<td>2017</td>
<td>81,829</td>
<td>81,918</td>
<td>75,773</td>
<td>77,745</td>
<td>77,745</td>
</tr>
<tr>
<td>2018</td>
<td>84,954</td>
<td>85,092</td>
<td>74,464</td>
<td>73,497</td>
<td>73,497</td>
</tr>
<tr>
<td>2019</td>
<td>88,198</td>
<td>88,389</td>
<td>75,451</td>
<td>75,742</td>
<td>75,742</td>
</tr>
<tr>
<td>2020</td>
<td>91,548</td>
<td>91,816</td>
<td>77,094</td>
<td>76,996</td>
<td>76,996</td>
</tr>
<tr>
<td>2021</td>
<td>95,064</td>
<td>95,376</td>
<td>79,294</td>
<td>79,740</td>
<td>79,740</td>
</tr>
<tr>
<td>2022</td>
<td>98,701</td>
<td>99,075</td>
<td>81,794</td>
<td>81,478</td>
<td>81,478</td>
</tr>
<tr>
<td>2023</td>
<td>102,474</td>
<td>102,919</td>
<td>84,251</td>
<td>84,685</td>
<td>84,685</td>
</tr>
<tr>
<td>2024</td>
<td>106,393</td>
<td>106,912</td>
<td>83,953</td>
<td>84,600</td>
<td>84,600</td>
</tr>
<tr>
<td>2025</td>
<td>110,463</td>
<td>111,062</td>
<td>85,245</td>
<td>85,513</td>
<td>85,513</td>
</tr>
<tr>
<td>2026</td>
<td>114,689</td>
<td>115,374</td>
<td>87,133</td>
<td>87,133</td>
<td>87,133</td>
</tr>
<tr>
<td>2027</td>
<td>119,078</td>
<td>119,854</td>
<td>88,561</td>
<td>88,729</td>
<td>88,729</td>
</tr>
<tr>
<td>2028</td>
<td>123,636</td>
<td>124,510</td>
<td>89,561</td>
<td>90,199</td>
<td>90,199</td>
</tr>
<tr>
<td>2029</td>
<td>128,370</td>
<td>129,347</td>
<td>88,771</td>
<td>94,392</td>
<td>94,392</td>
</tr>
<tr>
<td>2030</td>
<td>133,286</td>
<td>134,274</td>
<td>86,753</td>
<td>95,604</td>
<td>95,604</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,633,455</td>
<td>1,640,811</td>
<td>1,308,955</td>
<td>1,305,081</td>
<td>1,318,629</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 10.17 Emisiones de CO₂e de la generación eléctrica de México, todos los escenarios

El caso de México tiene la particularidad que si bien, respecto a emisiones acumuladas en todo el período de estudio, el escenario ECN, genera mayor porcentaje de reducción de emisiones que el escenario EPA, respecto al escenario BAU, para el final del periodo de proyección el porcentaje de reducción en el escenario ECN, es menor que en el EPA. Esto se debe a la mayor demanda de electricidad y mayor penetración de gas natural para su abastecimiento, lo cual podría indicar la necesidad, por parte de México, de plantearse en algún momento una estrategia de limitación en el uso de gas natural como combustible de generación eléctrica sustituyéndolo por más energía renovable, más allá de las premisas consideradas para el escenario ECN.
10.3.5 Emisiones totales de CO$_2$e de la matriz energética y porcentajes de reducción

Tabla 10.4. Emisiones de CO$_2$e de la matriz energética de México, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>294,917</td>
<td>294,970</td>
<td>290,105</td>
<td>290,105</td>
<td>290,105</td>
</tr>
<tr>
<td>2017</td>
<td>302,117</td>
<td>302,227</td>
<td>292,262</td>
<td>291,923</td>
<td>291,923</td>
</tr>
<tr>
<td>2018</td>
<td>309,595</td>
<td>309,764</td>
<td>297,016</td>
<td>292,240</td>
<td>292,084</td>
</tr>
<tr>
<td>2019</td>
<td>317,355</td>
<td>317,592</td>
<td>302,151</td>
<td>294,226</td>
<td>294,360</td>
</tr>
<tr>
<td>2020</td>
<td>325,400</td>
<td>325,708</td>
<td>307,807</td>
<td>295,561</td>
<td>295,993</td>
</tr>
<tr>
<td>2021</td>
<td>333,736</td>
<td>334,119</td>
<td>315,227</td>
<td>297,857</td>
<td>298,596</td>
</tr>
<tr>
<td>2022</td>
<td>342,349</td>
<td>342,834</td>
<td>322,101</td>
<td>300,407</td>
<td>301,463</td>
</tr>
<tr>
<td>2023</td>
<td>351,307</td>
<td>351,859</td>
<td>327,569</td>
<td>301,993</td>
<td>303,402</td>
</tr>
<tr>
<td>2024</td>
<td>360,557</td>
<td>361,202</td>
<td>332,914</td>
<td>302,954</td>
<td>304,701</td>
</tr>
<tr>
<td>2025</td>
<td>370,128</td>
<td>370,873</td>
<td>339,021</td>
<td>304,669</td>
<td>306,788</td>
</tr>
<tr>
<td>2026</td>
<td>380,030</td>
<td>380,881</td>
<td>345,868</td>
<td>307,147</td>
<td>309,644</td>
</tr>
<tr>
<td>2027</td>
<td>390,273</td>
<td>391,237</td>
<td>352,135</td>
<td>309,795</td>
<td>312,688</td>
</tr>
<tr>
<td>2028</td>
<td>400,868</td>
<td>401,953</td>
<td>358,091</td>
<td>312,276</td>
<td>315,994</td>
</tr>
<tr>
<td>2029</td>
<td>411,825</td>
<td>413,039</td>
<td>361,725</td>
<td>311,853</td>
<td>315,632</td>
</tr>
<tr>
<td>2030</td>
<td>423,157</td>
<td>424,508</td>
<td>367,952</td>
<td>311,325</td>
<td>315,588</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5,601,641</td>
<td>5,610,773</td>
<td>5,199,861</td>
<td>4,812,338</td>
<td>4,836,566</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 10.19 Emisiones de CO$_2$e de la matriz energética de México, todos los escenarios
Mientras que el escenario EPA consigue una reducción de emisiones de solamente el 14.1% respecto al escenario BAU, lo cual está muy por debajo porcentaje total de reducciones planteadas por México como meta incondicional para el año 2030 en su NDCs del 25% respecto al escenario BAU (ver Anexo I); con el escenario ECN dicha reducción alcanzaría cerca del 24%, lo que representa un valor muy cercano a la mencionada meta y muy significativo para un país altamente dependiente del gas natural en su matriz energética. Dada la baja participación de la hidroenergía en la matriz energética de México, la sensibilidad al cambio climático, es prácticamente irrelevante respecto a las emisiones totales de CO2e. De la reducción total de emisiones de GEI del sector energético, alcanzado en el escenario ECN, respecto al escenario BAU (100.7 Mt de CO2e.), en el año 2030, el 35% corresponde al sector de generación eléctrica (ver Tablas 10.3 y 10.4).

10.4 América Central

10.4.1 Proyección y estructura del consumo final de energía

Figura 10.21 Proyección del consumo final de energía de América Central, todos los escenarios

Fuente: Resultados de la simulación
El ahorro en el consumo final de energía, respecto al escenario BAU, inherente al escenario de políticas actuales EPA, es solamente del 2%, sin embargo, mediante el escenario ECN propuesto, este ahorro es muy importante llegando al 29% respecto al BAU y 27% respecto al EPA. Esto se debe sobre todo a la sustitución del consumo de leña por fuentes modernas como el GLP y la electricidad, así como a la mayor penetración de estufas eficientes de leña (Figura 10.21).

Figura 10.22 Estructura de la matriz de consumo final de energía de América Central, todos los escenarios

Por el mismo hecho de la agresiva sustitución de leña por GLP y electricidad simulada en el escenario ECN, aunque se gana en eficiencia energética del consumo total, la participación de petrolíferos se incrementa drásticamente en el escenario ECN, como se puede apreciar en la Figura 10.22 (48% BAU, 47% EPA y 52% ECN). Por su parte la electricidad gana también espacio porcentual en la matriz de consumo final (25% ECN vs 14% EPA y 15% BAU).
10.4.2 Proyección y estructura de la generación eléctrica

Figura 10.23 Proyección de la generación eléctrica de América Central, todos los escenarios

Es muy significativo el incremento de la generación eléctrica, en el escenario ECN, respecto al BAU y al EPA, en América Central, dada la necesidad de abastecer la mayor electrificación de los usos finales, sobre todo por la sustitución de una parte del consumo de leña por electricidad (Figura 10.23).

Figura 10.24 Índice de renovabilidad de la generación eléctrica de América Central, todos los escenarios

Fuente: Resultados de la simulación
Aunque el principal cambio en la matriz de generación eléctrica de América Central, es la introducción del uso de gas natural (22% ECN y 19% EPA), también se destaca tanto en el escenario EPA, como en el escenario ECN, propuesto, la mayor renovabilidad de la matriz, gracias al incremento en la participación de la hidroenergía, la energía eólica, la geotermia y la energía solar (68% BAU, 77% EPA y 76% ECN). Se puede observar también en la Figura 10.24, que, dada la alta participación de la hidroenergía en la matriz eléctrica de América Central, la sensibilidad al cambio climático, sí afecta de una manera apreciable el índice de renovabilidad de la matriz (70% ECN(RCP8.5)).

10.4.3 Proyección y estructura de la oferta total de energía

Figura 10.25 Proyección de la oferta total de energía de América Central, todos los escenarios

En concordancia con el ahorro en el consumo final de energía, que se consigue en el escenario ECN, respecto al escenario BAU, la oferta total de energía también experimenta una disminución, que en este caso es del 25%. Como se observa en la Figura 10.25, la sensibilidad al CC, tiene un pequeño efecto negativo, sobre este ahorro de energía total.
La renovabilidad de la oferta total en el escenario EPA, mejora respecto al escenario BAU, sin embargo, con el escenario ECN propuesto este indicador decrece. Esto se debe a que el incremento en el consumo y generación de electricidad en el escenario ECN, es muy significativo y por lo tanto requiere de una mayor participación de energía firme que en este caso la proporcionan las centrales a gas natural. La sensibilidad al CC, afecta también a la renovabilidad de la oferta total debido a la importancia de la hidroenergía en esta subregión.

10.4.4 Emisiones de CO$_2$e de la generación eléctrica y porcentajes de reducción

Tabla 10.5. Emisiones de CO$_2$e de la generación eléctrica de América Central, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>8,566</td>
<td>8,566</td>
<td>8,566</td>
<td>8,566</td>
<td>8,566</td>
</tr>
<tr>
<td>2016</td>
<td>8,839</td>
<td>8,844</td>
<td>9,493</td>
<td>9,493</td>
<td>9,493</td>
</tr>
<tr>
<td>2017</td>
<td>9,122</td>
<td>9,132</td>
<td>9,835</td>
<td>9,285</td>
<td>9,285</td>
</tr>
<tr>
<td>2018</td>
<td>9,414</td>
<td>9,430</td>
<td>9,847</td>
<td>8,877</td>
<td>8,966</td>
</tr>
<tr>
<td>2019</td>
<td>9,715</td>
<td>9,738</td>
<td>9,148</td>
<td>8,272</td>
<td>8,349</td>
</tr>
<tr>
<td>2020</td>
<td>10,027</td>
<td>10,056</td>
<td>9,337</td>
<td>7,186</td>
<td>7,436</td>
</tr>
<tr>
<td>2021</td>
<td>10,349</td>
<td>10,385</td>
<td>9,127</td>
<td>6,769</td>
<td>6,964</td>
</tr>
<tr>
<td>2022</td>
<td>10,682</td>
<td>10,726</td>
<td>8,020</td>
<td>6,200</td>
<td>6,456</td>
</tr>
<tr>
<td>2023</td>
<td>11,026</td>
<td>11,078</td>
<td>8,416</td>
<td>6,289</td>
<td>6,596</td>
</tr>
<tr>
<td>2024</td>
<td>11,382</td>
<td>11,442</td>
<td>8,746</td>
<td>6,649</td>
<td>7,010</td>
</tr>
<tr>
<td>2025</td>
<td>11,749</td>
<td>11,818</td>
<td>8,955</td>
<td>6,840</td>
<td>7,262</td>
</tr>
<tr>
<td>2026</td>
<td>12,229</td>
<td>12,207</td>
<td>7,934</td>
<td>6,006</td>
<td>6,532</td>
</tr>
<tr>
<td>2027</td>
<td>12,522</td>
<td>12,609</td>
<td>7,965</td>
<td>6,471</td>
<td>7,078</td>
</tr>
<tr>
<td>2028</td>
<td>12,928</td>
<td>13,026</td>
<td>8,569</td>
<td>7,295</td>
<td>7,989</td>
</tr>
<tr>
<td>2029</td>
<td>13,347</td>
<td>13,456</td>
<td>9,083</td>
<td>8,631</td>
<td>9,420</td>
</tr>
<tr>
<td>2030</td>
<td>13,781</td>
<td>13,901</td>
<td>9,482</td>
<td>10,512</td>
<td>11,400</td>
</tr>
</tbody>
</table>

TOTAL | 175,580 | 176,414 | 142,522 | 123,341 | 128,893

Fuente: Resultados de la simulación
Figura 10.27 Emisiones de CO2e de la generación eléctrica de América Central, todos los escenarios

Aunque el porcentaje de reducción de emisiones de CO2e acumuladas en el período de proyección, es mayor en el escenario ECN que en el escenario EPA, para el año 2030, el porcentaje de reducción anual, se hace menor en el escenario ECN que en el escenario EPA, debido al incremento acelerado de la generación eléctrica, que obliga al uso de mayor cantidad de gas natural. Se puede apreciar también que, con la sensibilidad al cambio climático, el porcentaje de reducción en las emisiones de CO2e decae significativamente sobre todo para el final del período de proyección.
10.4.5 Emisiones totales de CO₂e de la matriz energética y porcentajes de reducción

Tabla 10.6. Emisiones de CO₂e de la matriz energética de América Central, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año \ Escenario</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>35,968</td>
<td>35,993</td>
<td>34,802</td>
<td>34,302</td>
<td>34,302</td>
</tr>
<tr>
<td>2017</td>
<td>36,904</td>
<td>36,914</td>
<td>35,207</td>
<td>33,342</td>
<td>33,342</td>
</tr>
<tr>
<td>2018</td>
<td>37,848</td>
<td>37,864</td>
<td>35,506</td>
<td>32,992</td>
<td>34,765</td>
</tr>
<tr>
<td>2019</td>
<td>38,821</td>
<td>38,844</td>
<td>35,548</td>
<td>33,382</td>
<td>34,851</td>
</tr>
<tr>
<td>2020</td>
<td>39,825</td>
<td>39,854</td>
<td>36,308</td>
<td>33,374</td>
<td>34,936</td>
</tr>
<tr>
<td>2021</td>
<td>40,860</td>
<td>40,896</td>
<td>36,682</td>
<td>33,361</td>
<td>34,335</td>
</tr>
<tr>
<td>2022</td>
<td>41,928</td>
<td>41,972</td>
<td>36,114</td>
<td>33,946</td>
<td>34,982</td>
</tr>
<tr>
<td>2023</td>
<td>43,030</td>
<td>43,081</td>
<td>37,191</td>
<td>33,374</td>
<td>34,928</td>
</tr>
<tr>
<td>2024</td>
<td>44,166</td>
<td>44,226</td>
<td>38,061</td>
<td>34,738</td>
<td>35,842</td>
</tr>
<tr>
<td>2025</td>
<td>45,338</td>
<td>45,407</td>
<td>38,662</td>
<td>35,156</td>
<td>36,342</td>
</tr>
<tr>
<td>2026</td>
<td>46,548</td>
<td>46,625</td>
<td>38,243</td>
<td>34,349</td>
<td>35,655</td>
</tr>
<tr>
<td>2027</td>
<td>47,796</td>
<td>47,883</td>
<td>38,983</td>
<td>34,524</td>
<td>35,960</td>
</tr>
<tr>
<td>2028</td>
<td>49,084</td>
<td>49,182</td>
<td>40,313</td>
<td>34,979</td>
<td>36,546</td>
</tr>
<tr>
<td>2029</td>
<td>50,413</td>
<td>50,522</td>
<td>41,565</td>
<td>35,566</td>
<td>37,288</td>
</tr>
<tr>
<td>2030</td>
<td>51,785</td>
<td>51,905</td>
<td>42,742</td>
<td>36,312</td>
<td>38,845</td>
</tr>
<tr>
<td>TOTAL</td>
<td>685,432</td>
<td>686,268</td>
<td>600,528</td>
<td>548,895</td>
<td>567,473</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 10.29 Emisiones de CO₂e de la matriz energética de América Central, todos los escenarios

Fuente: Resultados de la simulación
Aunque el porcentaje de reducción de emisiones de GEI, lograda con el escenario EPA al año 2030, respecto al escenario BAU, es importante (17.5%), todavía algunos NDCs, condicionales de países de la subregión, plantean metas más ambiciosas (ejemplo: Guatemala 22.6%), mientras que con el escenario ECN, este porcentaje de reducción alcanzaría un valor cercano al 30%. Aunque existe una gran heterogeneidad en la forma en que los países centroamericanos, plantean sus NDCs, lo cual dificulta la agregación de las metas de reducción de emisiones a nivel subregional, se puede asegurar que con un 30% de reducción integral, en el sector energético, las expectativas como subregión van a estar superadas (ver Anexo II), incluso en el escenario ECN, con sensibilidad al cambio climático (ECN (RCP8.5)). En la reducción total de emisiones de GEI alcanzadas en el escenario ECN, respecto al escenario BAU (15.5 Mt de CO2e.) el sector de generación eléctrica contribuye con el 41% (ver Tablas 10.5 y 10.6).

10.5 Subregión Andina

10.5.1 Proyección y estructura del consumo final de energía

Fuente: Resultados de la simulación

<table>
<thead>
<tr>
<th>Año</th>
<th>Electricidad</th>
<th>Solar térmica</th>
<th>Biomasa</th>
<th>Carbón mineral y coque</th>
<th>Gas natural</th>
<th>Petróleo y derivados</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>133</td>
<td>0</td>
<td>60</td>
<td>29</td>
<td>134</td>
<td>447</td>
<td>803</td>
</tr>
<tr>
<td>2030 BAU</td>
<td>240</td>
<td>0</td>
<td>79</td>
<td>54</td>
<td>140</td>
<td>832</td>
<td>1.346</td>
</tr>
<tr>
<td>2030 BAU (RCP8.5)</td>
<td>241</td>
<td>0</td>
<td>79</td>
<td>54</td>
<td>140</td>
<td>832</td>
<td>1.347</td>
</tr>
<tr>
<td>2030 EPA</td>
<td>231</td>
<td>0</td>
<td>79</td>
<td>54</td>
<td>140</td>
<td>800</td>
<td>1.304</td>
</tr>
<tr>
<td>2030 ECN</td>
<td>303</td>
<td>25</td>
<td>78</td>
<td>46</td>
<td>129</td>
<td>561</td>
<td>1.142</td>
</tr>
<tr>
<td>2030 ECN (RCP8.5)</td>
<td>304</td>
<td>25</td>
<td>78</td>
<td>46</td>
<td>129</td>
<td>561</td>
<td>1.143</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
El escenario EPA en la Subregión Andina permite ahorrar un 3% del consumo final de energía respecto al escenario BAU, mientras que el escenario NDCs, incrementa dicho ahorro hasta un 15%.

Figura 10.32 Estructura de la matriz de consumo final de energía de la Subregión Andina, todos los escenarios

![Gráfico de consumos energéticos](image)

Fuente: Resultados de la simulación

Con respecto a la estructura del consumo final, en el escenario ECN, se destaca el desplazamiento del uso de petrolíferos y el incremento del uso de la electricidad y de la energía solar térmica para calentamiento de agua.

10.5.2 Proyección y estructura de la generación eléctrica

Figura 10.33 Proyección de la generación eléctrica de la Subregión Andina, todos los escenarios

![Gráfico de generación eléctrica](image)

Fuente: Resultados de la simulación
La generación adicional de electricidad requerida en el escenario ECN, en la Subregión Andina, es suplida con fuentes de energía renovable, como la hidráulica, la eólica, la solar y la geotermia. Los efectos del cambio climático simulados en el escenario ECN (RCP8.5), produce un pequeño incremento en la generación total.

Figura 10.34 Índice de renovabilidad de la generación eléctrica de la Subregión Andina, todos los escenarios

Si bien el escenario EPA, ya consigue mejorar de manera evidente el índice de renovabilidad de la generación eléctrica de la Subregión Andina, con respecto al escenario BAU, el escenario ECN, incrementa este indicador hasta superar las tres cuartas partes de la matriz (56% BAU, 66% EPA y 78% ECN).

10.5.3 Proyección y estructura de la oferta total de energía

Figura 10.35 Proyección de la oferta total de energía de la Subregión Andina, todos los escenarios
El escenario EPA, consigue un 5% de ahorro en la oferta total de energía, respecto al escenario BAU, mientras que el escenario ECN, gracias a las medidas de eficiencia energética, incrementa este porcentaje de ahorro hasta el 13%. Es también importante destacar la reducción en la participación del petróleo y sus derivados en la matriz de oferta total de energía para el año 2030 (51% BAU, 44% EPA y 37% ECN).

Figura 10.36 Índice de renovabilidad de la oferta total de energía de la Subregión Andina, todos los escenarios

![Índice de renovabilidad](image_url)

Fuente: Resultados de la simulación

Si bien la matriz de oferta total de energía de la Subregión Andina, en todos los escenarios simulados, continúa siendo hasta el final del periodo de proyección altamente dependiente de las fuentes fósiles, el escenario ECN, consigue un índice de renovabilidad de dicha matriz del 29%, frente al 14% del escenario BAU y el 17% del escenario EPA.

10.5.4 Emisiones de CO₂e de la generación eléctrica y porcentajes de reducción

Tabla 10.7. Emisiones de CO₂e de la generación eléctrica de la Subregión Andina, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año</th>
<th>BAU (kt)</th>
<th>BAU(RCP8.5)</th>
<th>EPA (kt)</th>
<th>ECN (kt)</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>45,807</td>
<td>45,807</td>
<td>45,807</td>
<td>45,807</td>
<td>45,807</td>
</tr>
<tr>
<td>2016</td>
<td>47,577</td>
<td>47,592</td>
<td>47,433</td>
<td>47,433</td>
<td>47,433</td>
</tr>
<tr>
<td>2017</td>
<td>49,397</td>
<td>49,428</td>
<td>47,792</td>
<td>44,542</td>
<td>44,542</td>
</tr>
<tr>
<td>2018</td>
<td>51,302</td>
<td>51,350</td>
<td>42,332</td>
<td>35,000</td>
<td>35,251</td>
</tr>
<tr>
<td>2019</td>
<td>53,297</td>
<td>53,363</td>
<td>40,873</td>
<td>32,609</td>
<td>33,088</td>
</tr>
<tr>
<td>2020</td>
<td>55,386</td>
<td>55,472</td>
<td>43,374</td>
<td>31,276</td>
<td>31,008</td>
</tr>
<tr>
<td>2021</td>
<td>57,575</td>
<td>57,681</td>
<td>46,546</td>
<td>29,884</td>
<td>30,884</td>
</tr>
<tr>
<td>2022</td>
<td>59,867</td>
<td>59,996</td>
<td>45,189</td>
<td>26,210</td>
<td>27,538</td>
</tr>
<tr>
<td>2023</td>
<td>62,270</td>
<td>62,422</td>
<td>46,576</td>
<td>24,437</td>
<td>26,090</td>
</tr>
<tr>
<td>2024</td>
<td>64,782</td>
<td>64,965</td>
<td>48,473</td>
<td>23,184</td>
<td>25,184</td>
</tr>
<tr>
<td>2025</td>
<td>67,425</td>
<td>67,631</td>
<td>49,239</td>
<td>20,454</td>
<td>22,860</td>
</tr>
<tr>
<td>2026</td>
<td>70,191</td>
<td>70,426</td>
<td>51,275</td>
<td>19,233</td>
<td>22,077</td>
</tr>
<tr>
<td>2027</td>
<td>73,090</td>
<td>73,356</td>
<td>53,415</td>
<td>19,561</td>
<td>22,872</td>
</tr>
<tr>
<td>2028</td>
<td>76,130</td>
<td>76,430</td>
<td>56,480</td>
<td>22,484</td>
<td>26,295</td>
</tr>
<tr>
<td>2029</td>
<td>79,318</td>
<td>79,654</td>
<td>60,643</td>
<td>27,688</td>
<td>32,115</td>
</tr>
<tr>
<td>2030</td>
<td>82,661</td>
<td>83,035</td>
<td>63,986</td>
<td>38,467</td>
<td>43,600</td>
</tr>
<tr>
<td>TOTAL</td>
<td>996,081</td>
<td>998,607</td>
<td>789,432</td>
<td>488,250</td>
<td>517,645</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 10.37 Emisiones de CO2e de la generación eléctrica de la Subregión Andina, todos los escenarios

![Gráfico de líneas de emisiones de CO2e](imagen1.png)

Fuente: Resultados de la simulación

Figura 10.38 Porcentajes de reducción de Emisiones de CO2e de la generación eléctrica de la Subregión Andina

![Gráfico de barras de porcentajes de reducción](imagen2.png)

Fuente: Resultados de la simulación

El porcentaje de reducción de emisiones en la matriz de generación eléctrica de la subregión Andina, es muy significativo en el escenario ECN, propuesto, ya que sobrepasa el 50%, tanto respecto al total del periodo de estudio, como respecto al año 2030. Este porcentaje es más del doble del conseguido en el escenario EPA, respecto al escenario BAU. La sensibilidad al cambio climático, afecta el porcentaje de reducción de emisiones de manera más evidente para el año final del periodo de proyección.
10.5.5 Emisiones totales de CO$_2$e de la matriz energética y porcentajes de reducción

Tabla 10.8. Emisiones de CO$_2$e de la matriz energética de la Subregión Andina, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año \ Escenario</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>236,365</td>
<td>236,365</td>
<td>236,365</td>
<td>236,365</td>
<td>236,365</td>
</tr>
<tr>
<td>2016</td>
<td>243,893</td>
<td>243,911</td>
<td>243,468</td>
<td>243,468</td>
<td>243,468</td>
</tr>
<tr>
<td>2017</td>
<td>251,781</td>
<td>251,819</td>
<td>249,453</td>
<td>246,706</td>
<td>246,706</td>
</tr>
<tr>
<td>2018</td>
<td>260,092</td>
<td>260,151</td>
<td>250,677</td>
<td>243,062</td>
<td>243,662</td>
</tr>
<tr>
<td>2019</td>
<td>268,847</td>
<td>268,929</td>
<td>256,012</td>
<td>244,735</td>
<td>245,574</td>
</tr>
<tr>
<td>2020</td>
<td>278,070</td>
<td>278,176</td>
<td>264,930</td>
<td>247,892</td>
<td>249,174</td>
</tr>
<tr>
<td>2021</td>
<td>287,784</td>
<td>287,916</td>
<td>274,783</td>
<td>250,934</td>
<td>252,678</td>
</tr>
<tr>
<td>2022</td>
<td>298,014</td>
<td>298,174</td>
<td>280,747</td>
<td>250,675</td>
<td>252,969</td>
</tr>
<tr>
<td>2023</td>
<td>308,788</td>
<td>308,978</td>
<td>289,977</td>
<td>252,983</td>
<td>255,824</td>
</tr>
<tr>
<td>2024</td>
<td>320,133</td>
<td>320,353</td>
<td>299,907</td>
<td>255,206</td>
<td>258,396</td>
</tr>
<tr>
<td>2025</td>
<td>332,080</td>
<td>332,336</td>
<td>309,176</td>
<td>256,031</td>
<td>260,123</td>
</tr>
<tr>
<td>2026</td>
<td>344,660</td>
<td>344,953</td>
<td>320,138</td>
<td>257,608</td>
<td>262,415</td>
</tr>
<tr>
<td>2027</td>
<td>357,908</td>
<td>358,240</td>
<td>331,685</td>
<td>259,301</td>
<td>264,871</td>
</tr>
<tr>
<td>2028</td>
<td>371,858</td>
<td>372,232</td>
<td>343,822</td>
<td>262,275</td>
<td>268,658</td>
</tr>
<tr>
<td>2029</td>
<td>386,548</td>
<td>386,966</td>
<td>358,130</td>
<td>265,494</td>
<td>272,890</td>
</tr>
<tr>
<td>2030</td>
<td>402,018</td>
<td>402,484</td>
<td>372,350</td>
<td>273,011</td>
<td>281,495</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4,948,835</td>
<td>4,951,985</td>
<td>4,681,620</td>
<td>4,046,322</td>
<td>4,096,075</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación

Figura 10.39 Emisiones de CO$_2$e de la matriz energética de la Subregión Andina, todos los escenarios

Fuente: Resultados de la simulación
En la Subregión Andina, al 2030, las emisiones de GEI del escenario energético EPA presentan una reducción del 7.4% respecto de las del BAU, lo que dista bastante de una meta referencial de entre el 20% y 25% de acuerdo a las NDCs, enunciadas por los países de esta subregión. Sin embargo, la reducción de emisiones de GEI que se obtendría de cumplirse las premisas del escenario ECN, es del 32%, lo cual es más coherente con la meta referencial para el sector energético de la subregión y los NDCs planteados por los países que la integran (ver Anexo II), como por ejemplo: Colombia, del 20 al 30%; Ecuador del 20 al 25%; Perú, del 20 al 30%; Venezuela, el 20%, respecto al escenario BAU. Este panorama favorable se mantiene, a pesar de los efectos del CC considerados en el escenario ECN(RCP8.5).

Cabe destacar también que en la reducción total de emisiones de GEI alcanzada con el escenario ECN (129 Mt de CO2e), respecto al escenario BAU, el 34% corresponde al sector de generación eléctrica (ver Tablas 10.7 y 10.8).

10.6 Cono Sur

10.6.1 Proyección y estructura del consumo final de energía

En el escenario EPA, para el final del período de proyección, se consigue un porcentaje de ahorro en el consumo anual de energía del 3%, mientras que con el escenario ECN, dicho ahorro significa el 15%, respecto al escenario BAU. Esto significa una reducción de consumo energético del 12% del escenario ECN, respecto al escenario EPA.
Mientras que la matriz de consumo final en el Cono Sur no sufre cambios relevantes en los escenarios BAU y EPA, en el escenario ECN, se aprecia una importante reducción de la participación de los hidrocarburos, cediéndole terreno a la electricidad (28% ECN vs 22% EPA y 22% BAU) y a la energía solar térmica (4% ECN).

10.6.2 Proyección y estructura de la generación eléctrica

Tanto en el escenario EPA como en el ECN, las ERNC, como la eólica y solar, ganan relevancia en la matriz de generación eléctrica del Cono Sur, siendo más evidente este aspecto en el escenario ECN, con participación inclusive de la geotermia (Figura 10.43).
Como observa en la figura 10.44, el escenario EPA, ya produce un incremento importante en el índice de renovabilidad de la matriz de generación eléctrica en el Cono Sur, sin embargo, con el escenario ECN, este indicador mejora aún más (60% ECN vs 54% EPA y 46% BAU), en detrimento del uso de carbón y principalmente de los petrolíferos. La sensibilidad al cambio climático, afecta en tres puntos porcentuales al mencionado indicador (57% ECN (RCP8.5)), dada la importancia que tiene la hidroenergía en la matriz.

10.6.3 Proyección y estructura de la oferta total de energía

El escenario EPA, permite un ahorro en la oferta total de energía del 3% y el escenario ECN propuesto, incrementa este ahorro hasta el 15%, gracias a las medidas de eficiencia energéticas simuladas en este escenario (Figura 10.45). Al igual que en la matriz de generación eléctrica, es evidente el incremento de la participación de las ERNC en el escenario EPA, pero principalmente en el escenario ECN, destacándose también, una sustancial disminución en la oferta de petrolíferos (23% ECN vs 29% EPA y 33% BAU).
Como se observa en la Figura 10.46, la renovabilidad de matrícula energética del Cono Sur es relativamente baja, debido a la gran dependencia que tiene esta subregión de las fuentes fósiles, especialmente Argentina y Chile, sin embargo, con el escenario ECN, este indicador mejora notablemente al ganar 10 puntos porcentuales, con relación al escenario BAU (30% ECN vs 22% EPA y 20% BAU).

10.6.4 Emisiones de CO$_2$e de la generación eléctrica y porcentajes de reducción

Tabla 10.9. Emisiones de CO$_2$e de la generación eléctrica del Cono Sur, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año \ Escenario</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>54,194</td>
<td>54,194</td>
<td>54,194</td>
<td>54,194</td>
<td>54,194</td>
</tr>
<tr>
<td>2016</td>
<td>58,017</td>
<td>58,017</td>
<td>53,332</td>
<td>53,332</td>
<td>53,332</td>
</tr>
<tr>
<td>2017</td>
<td>60,147</td>
<td>60,147</td>
<td>50,077</td>
<td>49,599</td>
<td>49,599</td>
</tr>
<tr>
<td>2018</td>
<td>62,359</td>
<td>62,359</td>
<td>50,650</td>
<td>49,035</td>
<td>49,314</td>
</tr>
<tr>
<td>2019</td>
<td>64,655</td>
<td>64,655</td>
<td>51,954</td>
<td>49,004</td>
<td>49,579</td>
</tr>
<tr>
<td>2020</td>
<td>67,039</td>
<td>67,039</td>
<td>53,674</td>
<td>47,547</td>
<td>48,429</td>
</tr>
<tr>
<td>2021</td>
<td>69,514</td>
<td>69,514</td>
<td>55,823</td>
<td>46,283</td>
<td>47,485</td>
</tr>
<tr>
<td>2022</td>
<td>72,084</td>
<td>72,084</td>
<td>58,089</td>
<td>45,263</td>
<td>46,798</td>
</tr>
<tr>
<td>2023</td>
<td>74,753</td>
<td>74,753</td>
<td>60,656</td>
<td>44,554</td>
<td>46,435</td>
</tr>
<tr>
<td>2024</td>
<td>77,524</td>
<td>77,524</td>
<td>63,178</td>
<td>43,876</td>
<td>46,134</td>
</tr>
<tr>
<td>2025</td>
<td>80,401</td>
<td>80,401</td>
<td>65,619</td>
<td>41,165</td>
<td>43,893</td>
</tr>
<tr>
<td>2026</td>
<td>83,389</td>
<td>83,389</td>
<td>66,974</td>
<td>39,018</td>
<td>42,252</td>
</tr>
<tr>
<td>2027</td>
<td>86,492</td>
<td>86,492</td>
<td>68,360</td>
<td>37,528</td>
<td>41,305</td>
</tr>
<tr>
<td>2028</td>
<td>89,715</td>
<td>89,715</td>
<td>69,900</td>
<td>36,792</td>
<td>41,147</td>
</tr>
<tr>
<td>2029</td>
<td>93,063</td>
<td>93,063</td>
<td>71,358</td>
<td>36,899</td>
<td>41,870</td>
</tr>
<tr>
<td>2030</td>
<td>96,539</td>
<td>96,539</td>
<td>72,984</td>
<td>37,928</td>
<td>43,552</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,189,887</td>
<td>1,189,887</td>
<td>966,823</td>
<td>712,015</td>
<td>745,320</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 10.47 Emisiones de CO$_2$e de la generación eléctrica del Cono Sur, todos los escenarios

![Gráfico de líneas mostrando emisiones de CO$_2$e]

Fuente: Resultados de la simulación

Figura 10.48 Porcentajes de reducción de Emisiones de CO$_2$e de la generación eléctrica del Cono Sur

![Gráfico de barras mostrando porcentajes de reducción]

Fuente: Resultados de la simulación

El porcentaje de reducción de emisiones de CO2e producidas por la generación eléctrica, es relativamente menor que en las otras subregiones, debido a que en los planes de expansión tanto del escenario EPA, como del escenario ECN propuesto, el gas natural juega un papel preponderante.

10.6.5 Emisiones totales de CO$_2$e de la matriz energética y porcentajes de reducción

Tabla 10.10. Emisiones de CO$_2$e de la matriz energética del Cono Sur, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año \ Escenario</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>182,611</td>
<td>182,611</td>
<td>182,611</td>
<td>182,611</td>
<td>182,611</td>
</tr>
<tr>
<td>2016</td>
<td>189,517</td>
<td>189,517</td>
<td>186,055</td>
<td>186,055</td>
<td>186,055</td>
</tr>
<tr>
<td>2017</td>
<td>194,674</td>
<td>194,674</td>
<td>185,368</td>
<td>185,060</td>
<td>185,060</td>
</tr>
<tr>
<td>2018</td>
<td>200,025</td>
<td>200,025</td>
<td>188,473</td>
<td>185,565</td>
<td>185,906</td>
</tr>
<tr>
<td>2019</td>
<td>205,579</td>
<td>205,579</td>
<td>192,943</td>
<td>186,547</td>
<td>187,249</td>
</tr>
<tr>
<td>2020</td>
<td>211,341</td>
<td>211,341</td>
<td>197,766</td>
<td>185,625</td>
<td>187,032</td>
</tr>
<tr>
<td>2021</td>
<td>217,320</td>
<td>217,320</td>
<td>203,074</td>
<td>184,817</td>
<td>186,234</td>
</tr>
<tr>
<td>2022</td>
<td>223,523</td>
<td>223,523</td>
<td>209,088</td>
<td>184,106</td>
<td>185,979</td>
</tr>
<tr>
<td>2023</td>
<td>229,957</td>
<td>229,957</td>
<td>215,093</td>
<td>183,675</td>
<td>185,970</td>
</tr>
<tr>
<td>2024</td>
<td>236,632</td>
<td>236,632</td>
<td>221,145</td>
<td>183,152</td>
<td>183,342</td>
</tr>
<tr>
<td>2025</td>
<td>243,556</td>
<td>243,556</td>
<td>227,749</td>
<td>180,014</td>
<td>183,342</td>
</tr>
<tr>
<td>2026</td>
<td>250,738</td>
<td>250,738</td>
<td>232,693</td>
<td>177,414</td>
<td>181,359</td>
</tr>
<tr>
<td>2027</td>
<td>258,188</td>
<td>258,188</td>
<td>237,790</td>
<td>175,445</td>
<td>180,035</td>
</tr>
<tr>
<td>2028</td>
<td>265,914</td>
<td>265,914</td>
<td>243,781</td>
<td>174,199</td>
<td>179,514</td>
</tr>
<tr>
<td>2029</td>
<td>273,928</td>
<td>273,928</td>
<td>249,213</td>
<td>173,764</td>
<td>179,830</td>
</tr>
<tr>
<td>2030</td>
<td>282,240</td>
<td>282,240</td>
<td>254,966</td>
<td>174,223</td>
<td>181,085</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,665,744</td>
<td>3,665,744</td>
<td>3,427,806</td>
<td>2,902,239</td>
<td>2,942,875</td>
</tr>
</tbody>
</table>
Figura 10.49 Emisiones de CO2e de la matriz energética del Cono Sur, todos los escenarios

Figura 10.50 Porcentajes de reducción de Emisiones de CO2e de la matriz energética del Cono Sur

Fuente: Resultados de la simulación
Mientras que el escenario EPA, produce un porcentaje de reducción de emisiones de CO2e, de la matriz energética del Cono Sur, muy modestos, con respecto al escenario BAU (8.5%), gracias al escenario ECN, este porcentaje mejora hasta llegar al final del periodo de estudio, cerca del 26%.

Si se toma como referencia la meta incondicional de Argentina, que tiene el mayor peso en la subregión respecto a las emisiones del sector energético, que plantea en sus NDCs una reducción del 20% de sus emisiones de CO2e al 2030 (Anexo II), un 25% de reducción de CO2e a nivel subregional, con el escenario ECN propuesto, podría ser considerado un éxito. Otros valores mencionados en los NDCs para esta subregión son: un 30% de reducción de emisiones en Chile respecto a los valores del año 2007, 10% de reducción en Paraguay, respecto al escenario BAU y 25% de reducción de intensidad de emisiones, respecto al año 1990 en Uruguay. Aunque el escenario con efecto del CC reduciría el porcentaje de reducción de emisiones a un valor cercano al 24%, todavía se lo podría considerar válido respecto a la meta referencial de la subregión. Los metas condicionales, sin embargo, plantean un reto mayor, y las premisas consideradas para el escenario ECN, si bien positivas, serían todavía insuficientes.

De la reducción total de emisiones que se observa al contrastar los escenarios energéticos ECN y BAU en el año 2030 (73.2 Mt de CO2e.), el sector eléctrico contribuye con el 39% (ver Tablas 10.9 y 10.10).

10.7 El Caribe

10.7.1 Proyección y estructura del consumo final de energía

Figura 10.51 Proyección del consumo final de energía de El Caribe, todos los escenarios

El ahorro en el consumo final de energía, logrado en el escenario EPA, representa un 2%, respecto al escenario BAU, con el escenario ECN, este porcentaje alcanza el 9%. Por lo tanto, el ahorro de energía en el escenario ECN, respecto al escenario EPA es del 7%. Por la relativamente baja participación de la hidroenergía, los escenarios con efecto del cambio climático, no producen variaciones importantes en los resultados.
La matriz de consumo final, no sufre cambios importantes en los escenarios BAU y EPA, sin embargo, en el escenario ECN, existe un incremento en la participación del gas natural y la electricidad, desplazando consumo de petrolíferos y biomasa.

10.7.2 Proyección y estructura de la generación eléctrica

Aunque existe una mayor penetración de electricidad en el consumo final, la generación eléctrica total en El Caribe, disminuye en los escenarios EPA y ECN debido a las medidas de eficiencia energética y a la reducción de pérdidas eléctricas de transmisión y distribución. En el escenario ECN, se desataca la mayor penetración de hidroenergía, biomasa, eólica y energía solar, desplazando completamente a los petrolíferos y reduciendo al mínimo al uso de carbón mineral.
Como se observa en la figura 10.54, la renovabilidad de la generación eléctrica en El Caribe es relativamente baja en el año base y en el escenario BAU, debido a la alta dependencia de la generación con fuentes fósiles, mientras que en el escenario EPA y mucho más en el escenario ECN, este indicador mejora de manera importante gracias a la mayor penetración de la hidroenergía y las ERNC (45% ECN, 26% EPA y 8% BAU). También es importante destacar el incremento de la participación del gas natural en la generación eléctrica (51% ECN, 44% EPA y 40% BAU); desplazando de manera significativa el uso del carbón y derivados del petróleo.

10.7.3 Proyección y estructura de la oferta total de energía

El ahorro en la oferta total de energía con el escenario EPA, para El Caribe, es solamente del 2%, respecto al escenario BAU; mientras que con el escenario ECN, este ahorro representa el 9%. Si bien la biomasa y otras fuentes renovables, incrementan su participación en la matriz energética, esta sigue siendo principalmente dependiente del gas natural y los petrolíferos.
Tanto con el escenario EPA, como con el escenario ECN, la subregión de El Caribe mejora el índice de renovabilidad de la matriz energética de manera importante respecto al escenario BAU (23% ECN vs 18% EPA y 13% BAU). Aunque esta matriz sigue siendo predominantemente no renovable en todos los escenarios, existe un incremento en la participación del gas natural (50% ECN, 45% EPA y 43% BAU), en detrimento del petróleo y sus derivados.

10.7.4 Emisiones de CO₂e de la generación eléctrica y porcentajes de reducción

Tabla 10.11. Emisiones de CO₂e de la generación eléctrica de El Caribe, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año \ Escenario</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>18,152</td>
<td>18,152</td>
<td>18,152</td>
<td>18,152</td>
<td>18,152</td>
</tr>
<tr>
<td>2016</td>
<td>18,824</td>
<td>18,835</td>
<td>18,077</td>
<td>18,077</td>
<td>18,077</td>
</tr>
<tr>
<td>2017</td>
<td>19,526</td>
<td>19,547</td>
<td>18,185</td>
<td>18,148</td>
<td>18,148</td>
</tr>
<tr>
<td>2018</td>
<td>20,258</td>
<td>20,292</td>
<td>18,554</td>
<td>17,638</td>
<td>17,660</td>
</tr>
<tr>
<td>2019</td>
<td>21,022</td>
<td>21,069</td>
<td>18,944</td>
<td>17,224</td>
<td>17,269</td>
</tr>
<tr>
<td>2020</td>
<td>21,820</td>
<td>21,881</td>
<td>19,314</td>
<td>17,198</td>
<td>17,267</td>
</tr>
<tr>
<td>2021</td>
<td>22,653</td>
<td>22,729</td>
<td>18,881</td>
<td>16,355</td>
<td>16,454</td>
</tr>
<tr>
<td>2022</td>
<td>23,524</td>
<td>23,615</td>
<td>19,429</td>
<td>16,508</td>
<td>16,634</td>
</tr>
<tr>
<td>2023</td>
<td>24,433</td>
<td>24,542</td>
<td>20,249</td>
<td>16,837</td>
<td>16,991</td>
</tr>
<tr>
<td>2024</td>
<td>25,383</td>
<td>25,510</td>
<td>21,146</td>
<td>17,264</td>
<td>17,447</td>
</tr>
<tr>
<td>2025</td>
<td>26,376</td>
<td>26,522</td>
<td>22,033</td>
<td>17,378</td>
<td>17,597</td>
</tr>
<tr>
<td>2026</td>
<td>27,413</td>
<td>27,581</td>
<td>22,942</td>
<td>17,572</td>
<td>17,829</td>
</tr>
<tr>
<td>2027</td>
<td>28,498</td>
<td>28,687</td>
<td>23,068</td>
<td>17,217</td>
<td>17,526</td>
</tr>
<tr>
<td>2028</td>
<td>29,632</td>
<td>29,845</td>
<td>23,905</td>
<td>16,881</td>
<td>17,244</td>
</tr>
<tr>
<td>2029</td>
<td>30,817</td>
<td>31,056</td>
<td>24,664</td>
<td>16,644</td>
<td>17,064</td>
</tr>
<tr>
<td>2030</td>
<td>32,057</td>
<td>32,323</td>
<td>25,619</td>
<td>16,514</td>
<td>16,996</td>
</tr>
<tr>
<td>TOTAL</td>
<td>390,387</td>
<td>392,185</td>
<td>333,161</td>
<td>275,605</td>
<td>278,355</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 10.57 Emisiones de CO$_2$e de la generación eléctrica de El Caribe, todos los escenarios

![Diagrama de emisiones CO$_2$e de generación eléctrica de El Caribe]

Fuente: Resultados de la simulación

Figura 10.58 Porcentajes de reducción de Emisiones de CO$_2$e de la generación eléctrica de El Caribe

Los porcentajes de reducción de emisiones de CO$_2$e de la generación eléctrica de El Caribe, son muy importantes en el escenario ECN, debido por una parte a la disminución de la generación eléctrica y por otra al incremento de la renovabilidad en dicha actividad (Figura 10.58).

10.7.5 Emisiones totales de CO$_2$e de la matriz energética y porcentajes de reducción

Tabla 10.12. Emisiones de CO$_2$e de la matriz energética de El Caribe, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año</th>
<th>Escenario</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>65,319</td>
<td>65,319</td>
<td>65,319</td>
<td>65,319</td>
<td>65,319</td>
<td>65,319</td>
</tr>
<tr>
<td>2017</td>
<td>67,327</td>
<td>67,349</td>
<td>65,090</td>
<td>65,018</td>
<td>65,018</td>
<td>65,018</td>
</tr>
<tr>
<td>2018</td>
<td>68,473</td>
<td>68,509</td>
<td>65,685</td>
<td>64,573</td>
<td>64,595</td>
<td>64,595</td>
</tr>
<tr>
<td>2019</td>
<td>69,670</td>
<td>69,720</td>
<td>64,252</td>
<td>63,763</td>
<td>63,808</td>
<td>63,808</td>
</tr>
<tr>
<td>2020</td>
<td>70,920</td>
<td>70,983</td>
<td>63,453</td>
<td>63,523</td>
<td>63,523</td>
<td>63,523</td>
</tr>
<tr>
<td>2021</td>
<td>72,223</td>
<td>72,302</td>
<td>66,783</td>
<td>62,868</td>
<td>62,786</td>
<td>62,786</td>
</tr>
<tr>
<td>2022</td>
<td>73,582</td>
<td>73,678</td>
<td>67,338</td>
<td>62,483</td>
<td>62,564</td>
<td>62,564</td>
</tr>
<tr>
<td>2023</td>
<td>75,000</td>
<td>75,114</td>
<td>68,992</td>
<td>62,504</td>
<td>62,605</td>
<td>62,605</td>
</tr>
<tr>
<td>2024</td>
<td>76,479</td>
<td>76,612</td>
<td>70,339</td>
<td>62,554</td>
<td>62,677</td>
<td>62,677</td>
</tr>
<tr>
<td>2025</td>
<td>78,021</td>
<td>78,175</td>
<td>71,679</td>
<td>62,635</td>
<td>62,782</td>
<td>62,782</td>
</tr>
<tr>
<td>2026</td>
<td>79,630</td>
<td>79,805</td>
<td>73,059</td>
<td>62,752</td>
<td>62,924</td>
<td>62,924</td>
</tr>
<tr>
<td>2027</td>
<td>81,306</td>
<td>81,505</td>
<td>73,629</td>
<td>62,724</td>
<td>62,990</td>
<td>62,990</td>
</tr>
<tr>
<td>2028</td>
<td>83,054</td>
<td>83,279</td>
<td>74,976</td>
<td>62,801</td>
<td>63,042</td>
<td>63,042</td>
</tr>
<tr>
<td>2029</td>
<td>84,877</td>
<td>85,128</td>
<td>76,226</td>
<td>63,091</td>
<td>63,203</td>
<td>63,203</td>
</tr>
<tr>
<td>2030</td>
<td>86,777</td>
<td>87,057</td>
<td>77,732</td>
<td>63,409</td>
<td>63,409</td>
<td>63,409</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,198,888</td>
<td>1,200,776</td>
<td>1,115,815</td>
<td>1,014,648</td>
<td>1,016,552</td>
<td>1,016,552</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
Figura 10.59 Emisiones de CO$_2$e de la matriz energética de El Caribe, todos los escenarios

![Gráfico de líneas]

Fuente: Resultados de la simulación

Figura 10.60 Porcentajes de reducción de Emisiones de CO$_2$e de la matriz energética de El Caribe

En la Figura 10.60, se observa para el año 2030, que frente a un incipiente 10.4% de reducción de emisiones de CO2e del escenario EPA, respecto al escenario BAU (ver capítulo 7), con el escenario ECN, este porcentaje alcanza el 27.3%. Este valor supera, por ejemplo, las metas condicionales planteadas por República Dominicana (25%) y Trinidad y Tobago (15%), que serían los países de más peso en la subregión respecto a la emisión de CO2e (Anexo II). Dada la baja incidencia de la hidroenergía en la oferta energética de la subregión, el escenario de sensibilidad al CC (ECN (RCP8.5)) presenta un efecto casi imperceptible. El aporte del sector eléctrico a la reducción total de emisiones que se observa al contrastar los escenarios energéticos ECN y BAU en el año 2030 (23.7 Mt de CO2e.), es particularmente importante en esta subregión, alcanzando un valor aproximado al 83% (ver Tablas 10.11 y 10.12).
10.8 América Latina y El Caribe (ALC)

10.8.1 Proyección y estructura del consumo final de energía

Figura 10.61 Proyección del consumo final de energía de ALC, todos los escenarios

Como se observa en la Figura 10.61, el escenario EPA, permite un ahorro en el consumo final de energía de la región integral de ALC, del 3%, mientras que el escenario ECN, eleva este ahorro hasta representar el 15%, respecto al escenario BAU y 12% respecto al EPA.

Figura 10.62 Estructura de la matriz de consumo final de energía de ALC, todos los escenarios

Fuente: Resultados de la simulación
Po otra parte en la Figura 10.62, se aprecia que en los escenarios BAU y EPA, prácticamente se mantiene la estructura de la matriz del consumo del año base, sin embargo, en el escenario ECN, se registra un incremento importante de la participación de la electricidad (26% ECN vs. 20% EPA y 20% BAU), desplazando principalmente a los petrolíferos (42% ECN vs. 50% EPA y 50% BAU).

10.8.2 Proyección y estructura de la generación eléctrica

Figura 10.63 Proyección de la generación eléctrica de ALC, todos los escenarios

Debido a las premisas, de mayor electrificación de los usos finales en las diferentes subregiones analizadas, se obtiene en la región integral de ALC, un incremento en la generación eléctrica, asociado al escenario ECN, respecto al BAU y al EPA. También se observa que dicho incremento de generación se cubre principalmente con ERNC como eólica, solar, biomasa y geotermia (Figura 10.63).
Gracias al incremento del uso de la hidroenergía y de las ERNC, registrado para el escenario ECN, en las diferentes subregiones analizadas, el índice de renovabilidad de la matriz de generación eléctrica de la región de ALC, se incrementa sustancialmente en dicho escenario (70% ECN vs 63% EPA y 52% BAU), en reemplazo del carbón y los petrolíferos (Figura 10.64).

10.8.3 Proyección y estructura de la oferta total de energía

Las medidas de eficiencia energética generan un ahorro en la oferta total de energía de la región de ALC, del 3% en el escenario EPA y del 12% en el escenario ECN, respecto al escenario BAU, para el año 2030. Con la sensibilidad al Cambio Climático, este ahorro en el escenario ECN(RCP8.5) cae al 11%. También es importante destacar la disminución en la participación del petróleo y sus derivados en esta matriz (41% BAU, 38% EPA y 32% ECN).
Gracias a la penetración más agresiva de fuentes renovables de energía, tanto convencionales como no convencionales en la matriz de generación eléctrica y también al mayor uso de biocombustibles en el sector transporte, medidas que fueron consideradas como premisas en el escenario ECN, se logra un incremento importante del índice de renovabilidad de la matriz energética de la región de ALC, como se observa en la Figura 10.66 (34% ECN, 27% EPA y 24% BAU). También vale la pena destacar que la sensibilidad al cambio climático, simulada en el escenario ECN(RCP8.5), afecta de manera muy leve a dicho indicador.

10.8.4 Emisiones de CO₂e de la generación eléctrica y porcentajes de reducción

<table>
<thead>
<tr>
<th>Año</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>246,621</td>
<td>246,621</td>
<td>246,621</td>
<td>246,621</td>
<td>246,621</td>
</tr>
<tr>
<td>2016</td>
<td>257,738</td>
<td>257,835</td>
<td>239,649</td>
<td>239,649</td>
<td>239,649</td>
</tr>
<tr>
<td>2017</td>
<td>267,432</td>
<td>267,634</td>
<td>228,199</td>
<td>225,765</td>
<td>225,765</td>
</tr>
<tr>
<td>2018</td>
<td>277,416</td>
<td>277,831</td>
<td>218,845</td>
<td>205,216</td>
<td>206,623</td>
</tr>
<tr>
<td>2019</td>
<td>288,008</td>
<td>288,444</td>
<td>219,789</td>
<td>199,691</td>
<td>202,461</td>
</tr>
<tr>
<td>2020</td>
<td>298,925</td>
<td>299,490</td>
<td>230,630</td>
<td>198,286</td>
<td>202,455</td>
</tr>
<tr>
<td>2021</td>
<td>310,283</td>
<td>310,987</td>
<td>238,565</td>
<td>195,934</td>
<td>201,411</td>
</tr>
<tr>
<td>2022</td>
<td>322,103</td>
<td>322,956</td>
<td>244,650</td>
<td>192,866</td>
<td>199,861</td>
</tr>
<tr>
<td>2023</td>
<td>334,404</td>
<td>335,416</td>
<td>256,976</td>
<td>193,964</td>
<td>202,517</td>
</tr>
<tr>
<td>2024</td>
<td>347,206</td>
<td>348,387</td>
<td>260,302</td>
<td>199,881</td>
<td>202,517</td>
</tr>
<tr>
<td>2025</td>
<td>360,531</td>
<td>361,893</td>
<td>269,407</td>
<td>188,636</td>
<td>200,799</td>
</tr>
<tr>
<td>2026</td>
<td>374,400</td>
<td>375,957</td>
<td>270,931</td>
<td>183,777</td>
<td>198,109</td>
</tr>
<tr>
<td>2027</td>
<td>388,838</td>
<td>390,601</td>
<td>279,487</td>
<td>189,576</td>
<td>204,061</td>
</tr>
<tr>
<td>2028</td>
<td>403,868</td>
<td>405,852</td>
<td>290,670</td>
<td>197,749</td>
<td>216,539</td>
</tr>
<tr>
<td>2029</td>
<td>419,516</td>
<td>421,735</td>
<td>293,924</td>
<td>202,057</td>
<td>223,682</td>
</tr>
<tr>
<td>2030</td>
<td>435,808</td>
<td>438,278</td>
<td>298,595</td>
<td>216,258</td>
<td>242,063</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5,333,198</td>
<td>5,349,917</td>
<td>4,086,782</td>
<td>3,267,621</td>
<td>3,415,396</td>
</tr>
</tbody>
</table>

Fuente: Resultados de la simulación
En la Figura 10.68, se puede observar, que los porcentajes de reducción de emisiones de CO2e en la generación eléctrica, son importantes en el escenario EPA y mucho más en el escenario ECN, respecto al escenario BAU, debido a las premisas de mayor uso de las fuentes de energía renovable, principalmente hidroenergía, biomasa, energía eólica y energía solar.
10.8.5 Emisiones totales de CO₂e de la matriz energética y porcentajes de reducción

Tabla 10.14. Emisiones de CO₂e de la matriz energética de ALC, todos los escenarios (kt)

<table>
<thead>
<tr>
<th>Año</th>
<th>Escenario</th>
<th>BAU</th>
<th>BAU(RCP8.5)</th>
<th>EPA</th>
<th>ECN</th>
<th>ECN(RCP8.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td>1,105,074</td>
<td>1,105,074</td>
<td>1,105,074</td>
<td>1,105,074</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td>1,137,418</td>
<td>1,117,545</td>
<td>1,117,545</td>
<td>1,117,545</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td>1,169,314</td>
<td>1,126,126</td>
<td>1,123,005</td>
<td>1,123,005</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td>1,202,632</td>
<td>1,137,220</td>
<td>1,119,603</td>
<td>1,123,780</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td>1,237,420</td>
<td>1,237,936</td>
<td>1,160,018</td>
<td>1,176,941</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td>1,273,731</td>
<td>1,194,552</td>
<td>1,132,599</td>
<td>1,138,552</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td>1,311,619</td>
<td>1,226,319</td>
<td>1,143,912</td>
<td>1,151,687</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td>1,351,143</td>
<td>1,258,356</td>
<td>1,152,443</td>
<td>1,161,440</td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td>1,392,367</td>
<td>1,296,950</td>
<td>1,166,016</td>
<td>1,176,941</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td>1,435,356</td>
<td>1,327,583</td>
<td>1,171,362</td>
<td>1,184,505</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td>1,480,181</td>
<td>1,365,329</td>
<td>1,181,093</td>
<td>1,196,509</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td>1,526,916</td>
<td>1,395,462</td>
<td>1,183,992</td>
<td>1,202,047</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
<td>1,575,640</td>
<td>1,435,242</td>
<td>1,197,145</td>
<td>1,217,810</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
<td>1,626,434</td>
<td>1,477,909</td>
<td>1,209,232</td>
<td>1,232,684</td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
<td>1,679,384</td>
<td>1,513,153</td>
<td>1,211,716</td>
<td>1,238,634</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td>1,734,583</td>
<td>1,552,423</td>
<td>1,223,416</td>
<td>1,254,740</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 22,239,210 22,259,002 20,689,260 18,553,188 18,742,475

Fuente: Resultados de la simulación

Figura 10.69 Emisiones de CO₂e de la matriz energética de ALC, todos los escenarios

Fuente: Resultados de la simulación
Figura 10.70 Porcentajes de reducción de Emisiones de CO₂e de la matriz energética de El Caribe

Frente a un insuficiente 10.5% de reducción de emisiones de CO₂e, alcanzado con el escenario EPA, respecto al escenario BAU, para la región integral de ALC (ver capítulo 7), mediante la simulación del escenario orientado al cumplimiento de las NDCs (ECN), este valor es cercano al 30%, como se puede observar en la Figura 10.70. Dada la meta referencial establecida para la región situada entre el 25 y 30% de reducción de emisiones anuales de CO₂e para el año 2030 (capítulo 4), se puede pensar que esta sería coherente y alcanzable a nivel regional, si se formulan políticas de desarrollo energético, similares a las premisas planteadas para el escenario ECN. (Anexo IV). Sin embargo, quizás en casos individuales como el de México, sería necesario aplicar políticas de reducción de emisiones todavía más ambiciosas que las planteadas en el Anexo IV para poder alcanzar las metas planteadas en sus NDCs.

El efecto del CC simulado en el escenario ECN(RCP8.5) supondría una reducción ligeramente inferior de emisiones para el año 2030, lo que equivale a un incremento de las mismas respecto al ECN de 2.6%. Ello, sin embargo, no pondría en entredicho la robustez del escenario ECN, ya que simplemente apuntaría la necesidad de adaptar ligeramente las medidas de promoción de energías renovables previstas en dicho escenario a los retos que pudieran ir planteando los efectos del cambio climático en cada zona, ya fuese aplicando medidas de adaptación en los sistemas hidroeléctricos o bien incrementado el uso de otras fuentes renovables.

La contribución de la generación eléctrica, en la reducción total de emisiones de GEI de la matriz energética, alcanzada con el escenario ECN, respecto al escenario BAU, para el año 2030 (511.2 Mt de CO₂e.), es del 38% (ver tablas 10.13 y 10.14).
11. Costos nivelados de energía eléctrica (LCOE), frente a la proyección de los costos internacionales de los combustibles
11. Costos nivelados de energía eléctrica (LCOE), frente a la proyección de los costos internacionales de los combustibles

11.1 Consideraciones generales

Para finalizar el estudio, se analiza en el presente capítulo, los costos nivelados de energía eléctrica (LCOE por sus siglas en inglés) para las diferentes tecnologías de generación y subregiones; y su sensibilidad ante un cambio en la proyección de los costos internacionales de los combustibles. El objetivo de este análisis es:

- Identificar las tecnologías ERNC, que resulten más competitivas económicamente frente a las fuentes convencionales (Proyección de LCOE por tecnologías);

- Determinar si las medidas de mayor penetración de ERNC en la matriz de generación eléctrica propuestas para alcanzar las metas de los NDCs (escenario ECN), tienen un efecto sobre el costo de la energía generada (Costos totales de generación y proyección de LCOE ponderados por escenario);

- Establecer los eventuales sobrecostos en inversión para sistemas de generación que la adopción de las medidas de mayor penetración de ERNC pudieren comportar al país o subregión (Costos totales de inversión en el período de proyección por escenarios).

Como es conocido, los LCOE, son costos anuales de generación eléctrica, que incluyen en su formulación, costos de inversión en la nueva infraestructura, costos fijos y variables de operación y mantenimiento (O&M) y costos de los combustibles para las centrales térmicas.

El Modelo SAME, calcula automáticamente los LCOE, para cada tecnología, con base en información de costos unitarios de cada uno de sus componentes. Los costos unitarios fijos y variables de O&M de cada tecnología, se consideraron comunes para todas las subregiones, mientras que, para los costos unitarios de inversión, se aplicó cierta discriminación por subregiones.

Las hipótesis de evolución de precios de los combustibles, se tomaron del escenario de referencia del documento “Annual Energy Outlook” de enero 2017, publicado por la agencia estadounidense “Energy Information Administration (EIA)”. De la página web de dicha agencia, también fue posible obtener valores referenciales para los costos unitarios de capital y de O&M, de las tecnologías de generación eléctrica. A continuación, se presentan los costos unitarios por tecnologías, considerados comunes para todas las subregiones analizadas.

LCOE es el costo del sistema por unidad de energía generada que incluye todos los costos a lo largo de la vida útil del proyecto: la inversión inicial, operación y mantenimiento, el costo de combustible, costo de capital, etc. El conocimiento del LCOE es una herramienta útil para la comparación de los costos de diferentes tecnologías (fuente: https://www.nrel.gov/analysis/tech-lcoe.html).
Tabla 11.1. Proyección de costos variables de O&M, (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>5.20</td>
<td>6.45</td>
<td>8.00</td>
<td>9.92</td>
<td>4.4%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>3.50</td>
<td>4.34</td>
<td>5.39</td>
<td>6.69</td>
<td>4.4%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>5.85</td>
<td>7.25</td>
<td>8.99</td>
<td>11.16</td>
<td>4.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>6.60</td>
<td>5.71</td>
<td>7.08</td>
<td>8.77</td>
<td>4.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>4.20</td>
<td>5.21</td>
<td>6.46</td>
<td>8.02</td>
<td>4.4%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>3.50</td>
<td>4.34</td>
<td>5.39</td>
<td>6.69</td>
<td>4.4%</td>
</tr>
<tr>
<td>Eólica</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>Solar</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>2.30</td>
<td>2.86</td>
<td>3.54</td>
<td>4.39</td>
<td>4.4%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia con base en datos del "Anual Energy Outlook", 2017 de la EIA, USA

Tabla 11.2. Proyección de costos Fijos de O&M, (US$/kW)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>30.00</td>
<td>37.21</td>
<td>46.14</td>
<td>57.22</td>
<td>4.4%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>11.00</td>
<td>13.65</td>
<td>16.92</td>
<td>20.98</td>
<td>4.4%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>6.9</td>
<td>8.56</td>
<td>10.62</td>
<td>13.18</td>
<td>4.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>42.10</td>
<td>52.21</td>
<td>64.75</td>
<td>80.30</td>
<td>4.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>110.00</td>
<td>136.43</td>
<td>169.20</td>
<td>209.83</td>
<td>4.4%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>120.00</td>
<td>148.82</td>
<td>184.58</td>
<td>228.92</td>
<td>4.4%</td>
</tr>
<tr>
<td>Eólica</td>
<td>39.70</td>
<td>39.70</td>
<td>39.70</td>
<td>39.70</td>
<td>0.0%</td>
</tr>
<tr>
<td>Solar</td>
<td>23.40</td>
<td>23.40</td>
<td>23.40</td>
<td>23.40</td>
<td>0.0%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>100.28</td>
<td>124.37</td>
<td>154.24</td>
<td>191.30</td>
<td>4.4%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia con base en datos del "Anual Energy Outlook", 2017 de la EIA, USA

Para el caso de los precios internacionales de los combustibles, se consideraron 2 escenarios: uno con tasa de crecimiento positiva durante el período de estudio y otro manteniendo los valores correspondientes al año base constantes durante todo el período de proyección.

Tabla 11.3. Precios internacionales de los combustibles, escenario con crecimiento (US$/bep)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas natural</td>
<td>15</td>
<td>18</td>
<td>22</td>
<td>27</td>
<td>4.0%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.5%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>1.0%</td>
</tr>
<tr>
<td>Diesel Oil</td>
<td>60</td>
<td>75</td>
<td>93</td>
<td>116</td>
<td>4.5%</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>56</td>
<td>69</td>
<td>86</td>
<td>107</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a datos del "Anual Energy Outlook", 2017 de la EIA, USA

Tabla 11.4. Precios internacionales de los combustibles, escenario sin crecimiento (US$/bep)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas natural</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>0.0%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.0%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0.0%</td>
</tr>
<tr>
<td>Diesel Oil</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>0.0%</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a datos del "Anual Energy Outlook", 2017 de la EIA, USA
Otros datos necesarios para el cálculo de los LCOE, son la tasa anual de descuento, la cual se consideró del 10% y la vida útil de las tecnologías, las mismas que se presentan en la siguiente tabla.

Tabla 11.5. Vida útil de las tecnologías de generación eléctrica (años)

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>Vida útil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>50</td>
</tr>
<tr>
<td>Gas natural</td>
<td>30</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>20</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>30</td>
</tr>
<tr>
<td>Biomasa</td>
<td>30</td>
</tr>
<tr>
<td>Geotermia</td>
<td>20</td>
</tr>
<tr>
<td>Eólica</td>
<td>20</td>
</tr>
<tr>
<td>Solar</td>
<td>20</td>
</tr>
<tr>
<td>Nuclear</td>
<td>50</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

A continuación, se presenta para cada subregión, los datos considerados de costos unitarios de inversión, los resultados de LCOE por tecnologías, los costos totales anuales de generación eléctrica, los costos totales de inversión en el período de proyección y los LCOE ponderados por escenario. En el caso de los costos totales de inversión, se analiza solamente los tres escenarios principales (BAU, EPA y ECN), que son los que difieren en los cronogramas de expansión de la capacidad de generación eléctrica.

11.2 Brasil
11.2.1 Costos unitarios de inversión

Tabla 11.6. Proyección de los costos unitarios de inversión para Brasil, (US$/kW)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>1,600</td>
<td>1,767</td>
<td>1,950</td>
<td>2,153</td>
<td>2.0%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>978</td>
<td>1,213</td>
<td>1,504</td>
<td>1,866</td>
<td>4.4%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>1,342</td>
<td>1,664</td>
<td>2,064</td>
<td>2,560</td>
<td>4.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>3,636</td>
<td>4,509</td>
<td>5,593</td>
<td>6,936</td>
<td>4.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>0.0%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>0.0%</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,850</td>
<td>1,850</td>
<td>1,750</td>
<td>1,750</td>
<td>-0.4%</td>
</tr>
<tr>
<td>Solar</td>
<td>2,000</td>
<td>2,000</td>
<td>1,800</td>
<td>1,800</td>
<td>-0.7%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6,000</td>
<td>6,956</td>
<td>8,064</td>
<td>9,348</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a datos del “Annual Energy Outlook”, 2017 de la EIA, USA

10 Valor aproximado tomando en cuenta el índice promedio de riesgo país en la región “EMBI” y las tasas de interés activas de los países (Fuente: CEPAL, 2017, Estudio Económico de América Latina y El Caribe 2017, Santiago de Chile).
11 Los LCOE ponderados por escenario se calculan dividiendo el costo total de generación para la energía total generada en cada año, lo que equivale a un promedio ponderado de los LCOE de las tecnologías.
11.2.2 Proyección de los LCOE por tecnologías
Tabla 11.7. LCOE para Brasil, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>49</td>
<td>54</td>
<td>59</td>
<td>62</td>
<td>1.6%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>49</td>
<td>54</td>
<td>61</td>
<td>65</td>
<td>1.9%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>55</td>
<td>68</td>
<td>83</td>
<td>102</td>
<td>4.1%</td>
</tr>
<tr>
<td>Diesel Fuel</td>
<td>130</td>
<td>162</td>
<td>202</td>
<td>251</td>
<td>4.5%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>80</td>
<td>98</td>
<td>121</td>
<td>149</td>
<td>4.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>125</td>
<td>134</td>
<td>146</td>
<td>161</td>
<td>1.7%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Edílica</td>
<td>73</td>
<td>73</td>
<td>62</td>
<td>62</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Solar</td>
<td>123</td>
<td>123</td>
<td>112</td>
<td>112</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>116</td>
<td>134</td>
<td>155</td>
<td>179</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.8. LCOE para Brasil, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>49</td>
<td>54</td>
<td>59</td>
<td>62</td>
<td>1.6%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>49</td>
<td>54</td>
<td>61</td>
<td>65</td>
<td>1.9%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>55</td>
<td>60</td>
<td>66</td>
<td>73</td>
<td>1.9%</td>
</tr>
<tr>
<td>Diesel Fuel</td>
<td>130</td>
<td>137</td>
<td>146</td>
<td>157</td>
<td>1.3%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>80</td>
<td>97</td>
<td>119</td>
<td>146</td>
<td>4.1%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>125</td>
<td>134</td>
<td>146</td>
<td>161</td>
<td>1.7%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Edílica</td>
<td>73</td>
<td>73</td>
<td>62</td>
<td>62</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Solar</td>
<td>123</td>
<td>123</td>
<td>112</td>
<td>112</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>116</td>
<td>133</td>
<td>153</td>
<td>176</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Figura 11.1. Proyección de los LCOE para Brasil, según los escenarios de precios de los combustibles

Como se observa en la figura 11.1, los LCOE de las ERNC, como la geotermia, la eólica y la solar fotovoltaica, mantienen valores competitivos, frente al carbón y los petrolíferos, incluso para el escenario de precios constantes de los combustibles. Cabe resaltar que inclusive en este escenario, la energía eólica resulta más competitiva que el gas natural.
11.2.3 Proyección de los costos totales de generación eléctrica

Tabla 11.9. Costo total de generación eléctrica para Brasil, escenario de precios crecientes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>37,866</td>
<td>51,768</td>
<td>70,994</td>
<td>96,317</td>
<td>6.4%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>37,866</td>
<td>52,222</td>
<td>72,490</td>
<td>99,419</td>
<td>6.6%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>37,866</td>
<td>46,077</td>
<td>60,323</td>
<td>78,016</td>
<td>4.9%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>37,866</td>
<td>44,962</td>
<td>59,088</td>
<td>85,303</td>
<td>5.6%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>37,866</td>
<td>45,392</td>
<td>60,656</td>
<td>89,212</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.10. Costo total de generación eléctrica para Brasil, escenario de precios constantes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>37,866</td>
<td>49,870</td>
<td>65,879</td>
<td>85,929</td>
<td>5.6%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>37,866</td>
<td>50,244</td>
<td>67,091</td>
<td>88,374</td>
<td>5.8%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>37,866</td>
<td>45,590</td>
<td>58,568</td>
<td>74,871</td>
<td>4.6%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>37,866</td>
<td>44,612</td>
<td>58,238</td>
<td>83,129</td>
<td>5.4%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>37,866</td>
<td>44,984</td>
<td>59,417</td>
<td>85,720</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Figura 11.2. Proyección del costo total de generación eléctrica para Brasil, según los escenarios de precios de los combustibles

En Brasil el escenario ECN, propuesto, genera un ahorro en el costo de generación respecto al escenario BAU, para el año 2030 del 11% en el escenario de precios crecientes de los combustibles, sin embargo, ese ahorro se reduce al 3% si los precios de los combustibles permanecen constantes. El costo en el escenario ECN, es mayor que en el EPA, debido al mayor requerimiento de energía eléctrica.

Si bien el costo total de generación eléctrica en mayor en el escenario ECN debido al mayor requerimiento de energía eléctrica, ello no es contradictorio con el hecho de que, como se ha visto en los capítulos anteriores, la mayor penetración de la electricidad en el consumo final, desplazando fuentes fósiles, produce una disminución neta de emisiones totales del sector energético en el escenario ECN con relación al EPA.
11.2.4 Costo total de inversión en generación eléctrica

Figura 11.3. Costo total de inversión en generación eléctrica para Brasil, en el período de proyección

Fuente: resultados de la simulación

Si bien en costo total de generación, valorado con los LCOEs, los escenarios EPA y ECN, permiten un ahorro económico respecto al escenario BAU (Figura 11.2), el costo de inversión total a lo largo del período de estudio es mayor en 12% y 86%, respectivamente (Figura 11.3).

11.2.5 Proyección de los LCOE ponderados por escenarios energéticos

Tabla 11.11. LCOE total para Brasil, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>65</td>
<td>74</td>
<td>84</td>
<td>94</td>
<td>2.5%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>65</td>
<td>74</td>
<td>85</td>
<td>96</td>
<td>2.6%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>65</td>
<td>67</td>
<td>73</td>
<td>80</td>
<td>1.4%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>65</td>
<td>67</td>
<td>74</td>
<td>79</td>
<td>1.3%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>65</td>
<td>67</td>
<td>75</td>
<td>82</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.12. LCOE total para Brasil, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>65</td>
<td>71</td>
<td>79</td>
<td>86</td>
<td>1.8%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>65</td>
<td>66</td>
<td>71</td>
<td>76</td>
<td>1.1%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>65</td>
<td>66</td>
<td>73</td>
<td>77</td>
<td>1.1%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>65</td>
<td>66</td>
<td>74</td>
<td>79</td>
<td>1.3%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>65</td>
<td>66</td>
<td>75</td>
<td>82</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
En las Tablas 11.11 y 11.12, se puede observar que el costo nivelado total de la energía generada tanto en el escenario EPA como en el ECN, para el año 2030, se reduce en un 15% y un 16% respectivamente respecto al escenario BAU, para un escenario de precios crecientes de los combustibles; y en un 9% y un 8% para un escenario de precios constantes de los combustibles. Ello indica que resulta un ligero beneficio de la implementación del escenario ECN con respecto al escenario EPA, para el caso de precios crecientes, pero un ligero sobrecosto en el caso de precios constantes.
11.3 México

11.3.1 Costos unitarios de inversión

Tabla 11.13. Proyección de los costos unitarios de inversión para México, (US$/kW)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>2,200</td>
<td>2,429</td>
<td>2,682</td>
<td>2,961</td>
<td>2.0%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>978</td>
<td>1,213</td>
<td>1,504</td>
<td>1,866</td>
<td>4.4%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>1,342</td>
<td>1,664</td>
<td>2,064</td>
<td>2,560</td>
<td>4.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>3,636</td>
<td>4,509</td>
<td>5,593</td>
<td>6,936</td>
<td>4.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>0.0%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>0.0%</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,700</td>
<td>1,700</td>
<td>1,600</td>
<td>1,600</td>
<td>0.4%</td>
</tr>
<tr>
<td>Solar</td>
<td>2,000</td>
<td>2,000</td>
<td>1,800</td>
<td>1,800</td>
<td>0.7%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6,000</td>
<td>6,956</td>
<td>8,064</td>
<td>9,348</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a datos del “Annual Energy Outlook”, 2017 de la EIA, USA

11.3.2 Proyección de los LCOE por tecnologías

Tabla 11.14. LCOE para México, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>77</td>
<td>87</td>
<td>98</td>
<td>111</td>
<td>2.5%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>77</td>
<td>89</td>
<td>105</td>
<td>123</td>
<td>3.2%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>51</td>
<td>63</td>
<td>77</td>
<td>95</td>
<td>4.2%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>159</td>
<td>198</td>
<td>246</td>
<td>306</td>
<td>4.5%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>81</td>
<td>100</td>
<td>123</td>
<td>152</td>
<td>4.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>57</td>
<td>62</td>
<td>68</td>
<td>75</td>
<td>1.8%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>88</td>
<td>93</td>
<td>99</td>
<td>106</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>68</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>147</td>
<td>147</td>
<td>134</td>
<td>134</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>113</td>
<td>130</td>
<td>150</td>
<td>174</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.15. LCOE para México, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>77</td>
<td>87</td>
<td>98</td>
<td>111</td>
<td>2.5%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>77</td>
<td>89</td>
<td>105</td>
<td>123</td>
<td>3.2%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>51</td>
<td>56</td>
<td>62</td>
<td>70</td>
<td>2%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>159</td>
<td>173</td>
<td>191</td>
<td>213</td>
<td>2%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>81</td>
<td>99</td>
<td>121</td>
<td>149</td>
<td>4.1%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>57</td>
<td>62</td>
<td>68</td>
<td>75</td>
<td>1.8%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>88</td>
<td>93</td>
<td>99</td>
<td>106</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>68</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>147</td>
<td>147</td>
<td>134</td>
<td>134</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>113</td>
<td>129</td>
<td>148</td>
<td>171</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
México tiene la particularidad, que debido al menor factor de planta que presentan sus centrales hidroeléctricas, ERNCs como la biomasa, la geotermia y la eólica, resultan tener LCOEs menores que la hidroenergía. Cabe destacar también que al 2030, las centrales eólicas constituyen la tecnología más barata, compitiendo muy de cerca con el gas natural para los dos escenarios de precios de los combustibles (Figura 11.5). También se observa que aunque la energía solar es la más cara de las ERNC, resulta más barata que tecnologías convencionales como la Diesel-fuel y las carboeléctricas al finalizar el período de proyección, debido sobre todo a la restricción en el despacho de estas últimas, por motivos ambientales, lo que hace disminuir su factor de planta.

11.3.3 Proyección de los costos totales de generación eléctrica

Tabla 11.16. Costo total de generación eléctrica para México, escenario de precios crecientes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th>Escenario</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>t.p.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>23,441</td>
<td>34,052</td>
<td>49,589</td>
<td>72,506</td>
<td>7.8%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>23,441</td>
<td>34,211</td>
<td>50,122</td>
<td>73,708</td>
<td>7.9%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>23,441</td>
<td>28,169</td>
<td>38,281</td>
<td>53,842</td>
<td>5.7%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>23,441</td>
<td>27,445</td>
<td>36,989</td>
<td>59,843</td>
<td>6.4%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>23,441</td>
<td>27,558</td>
<td>37,349</td>
<td>60,632</td>
<td>6.5%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
Tabla 11.17. Costo total de generación eléctrica para México, escenario de precios constantes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>23,441</td>
<td>31,375</td>
<td>42,395</td>
<td>57,945</td>
<td>6.2%</td>
</tr>
<tr>
<td>Escenario BAU (RCP8.5)</td>
<td>23,441</td>
<td>31,527</td>
<td>42,889</td>
<td>59,028</td>
<td>6.4%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>23,441</td>
<td>26,722</td>
<td>34,627</td>
<td>47,197</td>
<td>4.8%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>23,441</td>
<td>26,266</td>
<td>33,972</td>
<td>53,431</td>
<td>5.6%</td>
</tr>
<tr>
<td>Escenario ECN (RCP8.5)</td>
<td>23,441</td>
<td>26,166</td>
<td>33,972</td>
<td>53,431</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Figura 11.6. Proyección del costo total de generación eléctrica para México, según los escenarios de precios de los combustibles

En México, el escenario ECN, genera un ahorro del 17% respecto al escenario BAU, con precios crecientes de los combustibles, pero si dichos precios permanecen constantes, el ahorro se reducirá al 9% (Figura 11.6).

11.3.4 Costo total de inversión en generación eléctrica

Figura 11.7. Costo total de inversión en generación eléctrica para México, en el período de proyección

Fuente: resultados de la simulación
El escenario EPA tiene un sobrecosto de inversión total en el período de estudio del 18%, mientras que en el escenario ECN, este sobrecosto se eleva al 30%, debido al mayor requerimiento de capacidad y a la diversificación propuesta de la matriz de generación eléctrica (Figura 11.7).

11.3.5 Proyección de los LCOE ponderados por escenarios energéticos

Tabla 11.18. LCOE total para México, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>75</td>
<td>91</td>
<td>110</td>
<td>133</td>
<td>3.8%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>75</td>
<td>91</td>
<td>110</td>
<td>134</td>
<td>3.9%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>75</td>
<td>76</td>
<td>86</td>
<td>102</td>
<td>2%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>75</td>
<td>76</td>
<td>86</td>
<td>100</td>
<td>1.9%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>75</td>
<td>76</td>
<td>87</td>
<td>101</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.19. LCOE total para México, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>75</td>
<td>84</td>
<td>94</td>
<td>106</td>
<td>2.3%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>75</td>
<td>72</td>
<td>78</td>
<td>89</td>
<td>1.1%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>75</td>
<td>72</td>
<td>78</td>
<td>88</td>
<td>1.1%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>75</td>
<td>72</td>
<td>79</td>
<td>89</td>
<td>1.1%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>75</td>
<td>72</td>
<td>79</td>
<td>89</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Figura 11.8. Proyección del LCOE total para México, según los escenarios de precios de los combustibles

En México el LCOE ponderado por escenario, experimenta una disminución del 25% en el escenario ECN respecto al escenario BAU y del 2% respecto al escenario EPA, para un escenario de precios crecientes de los combustibles, mientras que para el escenario de precios constantes de los combustibles, estos porcentajes son del 17 y 1% respectivamente (ver Tablas 11.18 y 11.19).
11.4 América Central

11.4.1 Costos unitarios de inversión

Tabla 11.20. Proyección de los costos unitarios de inversión para América Central, (US$/kW)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>2,800</td>
<td>3,091</td>
<td>3,413</td>
<td>3,768</td>
<td>2.0%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>978</td>
<td>1,213</td>
<td>1,504</td>
<td>1,866</td>
<td>4.4%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>1,342</td>
<td>1,664</td>
<td>2,064</td>
<td>2,560</td>
<td>4.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>3,636</td>
<td>4,509</td>
<td>5,593</td>
<td>6,936</td>
<td>4.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>0.0%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>0.0%</td>
</tr>
<tr>
<td>Eólica</td>
<td>2,200</td>
<td>2,200</td>
<td>2,100</td>
<td>2,100</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>2,500</td>
<td>2,500</td>
<td>2,300</td>
<td>2,300</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6,000</td>
<td>6,956</td>
<td>8,064</td>
<td>9,348</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a datos del "Annual Energy Outlook", 2017 de la EIA, USA

11.4.2 Proyección de los LCOE por tecnologías

Tabla 11.21. LCOE para América Central, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>77</td>
<td>86</td>
<td>97</td>
<td>110</td>
<td>2.4%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>77</td>
<td>87</td>
<td>100</td>
<td>115</td>
<td>2.6%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>57</td>
<td>62</td>
<td>68</td>
<td>75</td>
<td>1.9%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>220</td>
<td>273</td>
<td>340</td>
<td>424</td>
<td>4.5%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>81</td>
<td>100</td>
<td>123</td>
<td>152</td>
<td>4.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>142</td>
<td>153</td>
<td>167</td>
<td>183</td>
<td>1.7%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>85</td>
<td>85</td>
<td>82</td>
<td>82</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>181</td>
<td>181</td>
<td>168</td>
<td>168</td>
<td>-0.5%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>112</td>
<td>129</td>
<td>149</td>
<td>172</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.22. LCOE para América Central, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>77</td>
<td>86</td>
<td>97</td>
<td>110</td>
<td>2.4%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>77</td>
<td>87</td>
<td>100</td>
<td>115</td>
<td>2.8%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>57</td>
<td>62</td>
<td>68</td>
<td>75</td>
<td>1.9%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>220</td>
<td>273</td>
<td>340</td>
<td>424</td>
<td>4.5%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>81</td>
<td>100</td>
<td>123</td>
<td>152</td>
<td>4.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>142</td>
<td>153</td>
<td>167</td>
<td>183</td>
<td>1.7%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>85</td>
<td>85</td>
<td>82</td>
<td>82</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>181</td>
<td>181</td>
<td>168</td>
<td>168</td>
<td>-0.5%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>112</td>
<td>129</td>
<td>147</td>
<td>169</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
Respecto a los LCOE en América Central, cabe resaltar el hecho de que la energía solar fotovoltaica, es menos competitiva que el carbón mineral en ambos escenarios de precios de los combustibles. Esto se debe a un menor factor de planta de esta tecnología y un relativamente alto costo de inversión.

11.4.3 Proyección de los costos totales de generación eléctrica

Tabla 11.23. Costo total de generación eléctrica para América Central, escenario de precios crecientes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>5,854</td>
<td>8,000</td>
<td>10,982</td>
<td>15,229</td>
<td>6.6%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>5,854</td>
<td>8,051</td>
<td>11,144</td>
<td>15,577</td>
<td>6.7%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>5,854</td>
<td>7,028</td>
<td>7,495</td>
<td>9,776</td>
<td>3.5%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>5,854</td>
<td>5,893</td>
<td>7,239</td>
<td>11,579</td>
<td>4.7%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>5,854</td>
<td>6,024</td>
<td>7,361</td>
<td>11,889</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.24. Costo total de generación eléctrica para América Central, escenario de precios constantes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>5,854</td>
<td>7,480</td>
<td>9,612</td>
<td>12,512</td>
<td>5.2%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>5,854</td>
<td>7,529</td>
<td>9,766</td>
<td>12,836</td>
<td>5.4%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>5,854</td>
<td>6,743</td>
<td>7,274</td>
<td>9,333</td>
<td>2.2%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>5,854</td>
<td>5,814</td>
<td>7,144</td>
<td>11,007</td>
<td>4.3%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>5,854</td>
<td>5,928</td>
<td>7,238</td>
<td>11,222</td>
<td>4.4%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
11.4.4 Costo total de inversión en generación eléctrica

En América Central, el sobrecosto de inversión en generación eléctrica del escenario EPA respecto al escenario BAU, es de apenas el 6%, mientras que el ECN, tendría un sobrecosto de inversión del 42%, esto se debe principalmente al importante incremento del requerimiento de generación de eléctrica en este último escenario.
11.4.5 Proyección de los LCOE ponderados por escenarios energéticos

Tabla 11.25. LCOE total para América Central, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>113</td>
<td>132</td>
<td>154</td>
<td>183</td>
<td>3.3%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>113</td>
<td>132</td>
<td>156</td>
<td>185</td>
<td>3.4%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>113</td>
<td>116</td>
<td>107</td>
<td>121</td>
<td>0.4%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>113</td>
<td>101</td>
<td>108</td>
<td>119</td>
<td>0.3%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>113</td>
<td>98</td>
<td>105</td>
<td>117</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.26. LCOE total para América Central, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>113</td>
<td>123</td>
<td>135</td>
<td>150</td>
<td>1.9%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>113</td>
<td>124</td>
<td>137</td>
<td>153</td>
<td>2.0%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>113</td>
<td>111</td>
<td>104</td>
<td>115</td>
<td>0.1%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>113</td>
<td>99</td>
<td>107</td>
<td>113</td>
<td>0.0%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>113</td>
<td>97</td>
<td>103</td>
<td>110</td>
<td>-0.2%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Figura 11.12. Proyección del LCOE total para América Central, según los escenarios de precios de los combustibles

Al 2030 los LCOE de los escenarios EPA y ECN registran una disminución, respecto al escenario BAU del 34% y 35% respectivamente, en el escenario de precios crecientes de los combustibles; y del 23% y 25% respectivamente, en el escenario de precios constantes de los combustibles (ver Tablas 11.25 y 11.26).
11.5 Subregión Andina

11.5.1 Costos unitarios de inversión

Tabla 11.27. Proyección de los costos unitarios de inversión para la Subregión Andina, (US$/kW)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>1,800</td>
<td>1,987</td>
<td>2,194</td>
<td>2,423</td>
<td>2.0%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>978</td>
<td>1,213</td>
<td>1,504</td>
<td>1,866</td>
<td>4.4%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>1,342</td>
<td>1,664</td>
<td>2,064</td>
<td>2,560</td>
<td>4.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>3,636</td>
<td>4,509</td>
<td>5,593</td>
<td>6,936</td>
<td>4.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>0.0%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>0.0%</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,750</td>
<td>1,750</td>
<td>1,650</td>
<td>1,650</td>
<td>-0.4%</td>
</tr>
<tr>
<td>Solar</td>
<td>2,000</td>
<td>2,000</td>
<td>1,800</td>
<td>1,800</td>
<td>-0.7%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6,000</td>
<td>6,956</td>
<td>8,064</td>
<td>9,348</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

11.5.2 Proyección de los LCOE por tecnologías

Tabla 11.28. LCOE para la Subregión Andina, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>44</td>
<td>50</td>
<td>57</td>
<td>65</td>
<td>2.7%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>44</td>
<td>51</td>
<td>59</td>
<td>68</td>
<td>3.0%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>57</td>
<td>62</td>
<td>69</td>
<td>77</td>
<td>4.1%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>234</td>
<td>290</td>
<td>359</td>
<td>445</td>
<td>4.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>73</td>
<td>90</td>
<td>111</td>
<td>136</td>
<td>4.2%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>134</td>
<td>144</td>
<td>157</td>
<td>172</td>
<td>1.7%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>70</td>
<td>70</td>
<td>67</td>
<td>67</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>147</td>
<td>147</td>
<td>134</td>
<td>134</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>112</td>
<td>129</td>
<td>149</td>
<td>172</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.29. LCOE para la Subregión Andina, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>44</td>
<td>50</td>
<td>57</td>
<td>65</td>
<td>2.7%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>44</td>
<td>51</td>
<td>59</td>
<td>68</td>
<td>3.0%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>57</td>
<td>62</td>
<td>69</td>
<td>77</td>
<td>1.8%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>234</td>
<td>249</td>
<td>266</td>
<td>288</td>
<td>1.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>73</td>
<td>89</td>
<td>109</td>
<td>133</td>
<td>4.0%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>134</td>
<td>144</td>
<td>157</td>
<td>172</td>
<td>1.7%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>70</td>
<td>70</td>
<td>67</td>
<td>67</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>147</td>
<td>147</td>
<td>134</td>
<td>134</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>112</td>
<td>128</td>
<td>147</td>
<td>169</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
Figura 11.13. Proyección de los LCOE para la Subregión Andina, según los escenarios de precios de los combustibles

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>21,596</td>
<td>31,308</td>
<td>45,824</td>
<td>67,772</td>
<td>7.9%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>21,596</td>
<td>31,450</td>
<td>46,315</td>
<td>68,885</td>
<td>8.0%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>21,596</td>
<td>21,770</td>
<td>29,450</td>
<td>40,798</td>
<td>4.3%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>21,596</td>
<td>20,647</td>
<td>26,930</td>
<td>36,888</td>
<td>3.6%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>21,596</td>
<td>18,841</td>
<td>24,538</td>
<td>43,488</td>
<td>5.4%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Para la subregión Andina, se observa que, en los dos escenarios de precios de los combustibles, las ERNC, son competitivas respecto a las fuentes fósiles, sobretodo la eólica (Figura 11.13).

11.5.3 Proyección de los costos totales de generación eléctrica

Tabla 11.30. Costo total de generación eléctrica para la Subregión Andina, escenario de precios crecientes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>21,596</td>
<td>28,535</td>
<td>38,275</td>
<td>52,181</td>
<td>6.1%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>21,596</td>
<td>28,673</td>
<td>38,743</td>
<td>53,223</td>
<td>6.2%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>21,596</td>
<td>20,647</td>
<td>26,930</td>
<td>36,888</td>
<td>3.6%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>21,596</td>
<td>17,966</td>
<td>22,994</td>
<td>42,344</td>
<td>4.6%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>21,596</td>
<td>18,114</td>
<td>23,518</td>
<td>43,561</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.31. Costo total de generación eléctrica para la Subregión Andina, escenario de precios constantes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>21,596</td>
<td>28,535</td>
<td>38,275</td>
<td>52,181</td>
<td>6.1%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>21,596</td>
<td>28,673</td>
<td>38,743</td>
<td>53,223</td>
<td>6.2%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>21,596</td>
<td>20,647</td>
<td>26,930</td>
<td>36,888</td>
<td>3.6%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>21,596</td>
<td>17,966</td>
<td>22,994</td>
<td>42,344</td>
<td>4.6%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>21,596</td>
<td>18,114</td>
<td>23,518</td>
<td>43,561</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
El escenario ECN, pese a que tiene mayor costo anual de generación que el escenario EPA, representa un ahorro del 33% a precios crecientes de los combustibles y del 19% a precios constantes, para la Subregión Andina (Figura 11.14).

11.5.4 Costo total de inversión en generación eléctrica

Los sobrecostos en inversión total en capacidad de generación eléctrica para la Subregión Andina, representan el 31% para el escenario EPA y el 69% para el escenario ECN, respecto al escenario BAU.
11.5.5 Proyección de los LCOE ponderados por escenarios energéticos

Tabla 11.32. LCOE total para la Subregión Andina, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>77</td>
<td>92</td>
<td>110</td>
<td>133</td>
<td>3.8%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>77</td>
<td>92</td>
<td>111</td>
<td>135</td>
<td>3.8%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>77</td>
<td>65</td>
<td>73</td>
<td>83</td>
<td>6.5%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>77</td>
<td>60</td>
<td>68</td>
<td>81</td>
<td>6.4%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>77</td>
<td>60</td>
<td>70</td>
<td>84</td>
<td>6.6%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.33. LCOE total para la Subregión Andina, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>77</td>
<td>84</td>
<td>92</td>
<td>102</td>
<td>2.0%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>77</td>
<td>84</td>
<td>93</td>
<td>104</td>
<td>2.1%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>77</td>
<td>61</td>
<td>66</td>
<td>75</td>
<td>0.1%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>77</td>
<td>58</td>
<td>67</td>
<td>77</td>
<td>0.1%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>77</td>
<td>58</td>
<td>67</td>
<td>77</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Figura 11.16. Proyección del LCOE total para la Subregión Andina, según los escenarios de precios de los combustibles

Los LCOE de los escenarios EPA y ECN, en el 2030, registran una disminución del 38% y 39% respectivamente, en comparación con los del BAU para ese mismo año, para un escenario de precios crecientes de los combustibles y del 27% en ambos casos para un escenario de precios constantes de los combustibles (ver tablas 11.32 y 11.33).
11.6 Cono Sur

11.6.1 Costos unitarios de inversión

Tabla 11.34. Proyección de los costos unitarios de inversión para el Cono Sur, (US$/kW)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>1,800</td>
<td>1,987</td>
<td>2,194</td>
<td>2,423</td>
<td>2.0%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>978</td>
<td>1,213</td>
<td>1,504</td>
<td>1,866</td>
<td>4.4%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>1,342</td>
<td>1,664</td>
<td>2,064</td>
<td>2,560</td>
<td>4.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>3,636</td>
<td>4,599</td>
<td>5,593</td>
<td>6,936</td>
<td>4.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>0.0%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>0.0%</td>
</tr>
<tr>
<td>Eólica</td>
<td>1,750</td>
<td>1,750</td>
<td>1,650</td>
<td>1,650</td>
<td>-0.4%</td>
</tr>
<tr>
<td>Solar</td>
<td>2,000</td>
<td>2,000</td>
<td>1,800</td>
<td>1,800</td>
<td>-0.7%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6,000</td>
<td>6,956</td>
<td>8,064</td>
<td>9,348</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a datos del "Annual Energy Outlook", 2017 de la EIA, USA

11.6.2 Proyección de los LCOE por tecnologías

Tabla 11.35. LCOE para el Cono Sur, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>54</td>
<td>61</td>
<td>69</td>
<td>79</td>
<td>2.6%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>53</td>
<td>62</td>
<td>73</td>
<td>86</td>
<td>3.2%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>58</td>
<td>69</td>
<td>85</td>
<td>104</td>
<td>4.1%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>228</td>
<td>284</td>
<td>354</td>
<td>441</td>
<td>4.2%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>79</td>
<td>96</td>
<td>121</td>
<td>149</td>
<td>4.2%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>53</td>
<td>73</td>
<td>97</td>
<td>118</td>
<td>1.8%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>70</td>
<td>70</td>
<td>67</td>
<td>67</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>98</td>
<td>98</td>
<td>89</td>
<td>89</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>125</td>
<td>144</td>
<td>166</td>
<td>192</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.36. LCOE para el Cono Sur, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>54</td>
<td>61</td>
<td>69</td>
<td>79</td>
<td>2.6%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>53</td>
<td>62</td>
<td>73</td>
<td>86</td>
<td>3.2%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>56</td>
<td>61</td>
<td>67</td>
<td>74</td>
<td>1.9%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>228</td>
<td>238</td>
<td>250</td>
<td>265</td>
<td>4.2%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>79</td>
<td>97</td>
<td>119</td>
<td>147</td>
<td>4.2%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>67</td>
<td>73</td>
<td>79</td>
<td>88</td>
<td>1.8%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>70</td>
<td>70</td>
<td>67</td>
<td>67</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>98</td>
<td>98</td>
<td>89</td>
<td>89</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>125</td>
<td>143</td>
<td>164</td>
<td>188</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
En el Cono Sur, para el año 2030, las ERNC, resultan ser sumamente competitivas respecto a las energías no renovables. Se puede observar que incluso la energía solar fotovoltaica, tiene un valor de LCOE comparable al de la hidroenergía. Esto se debe al alto factor de planta considerado para las fotovoltaicas, en esta subregión (Figura 11.17).

11.6.3 Proyección de los costos totales de generación eléctrica

Tabla 11.37. Costo total de generación eléctrica para el Cono Sur, escenario de precios crecientes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>21,272</td>
<td>31,342</td>
<td>44,852</td>
<td>64,614</td>
<td>7.7%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>21,272</td>
<td>31,525</td>
<td>45,339</td>
<td>66,189</td>
<td>7.9%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>21,272</td>
<td>26,624</td>
<td>36,193</td>
<td>49,515</td>
<td>5.8%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>21,272</td>
<td>26,229</td>
<td>34,783</td>
<td>48,734</td>
<td>5.7%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>21,272</td>
<td>26,431</td>
<td>35,549</td>
<td>50,667</td>
<td>6.0%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.38. Costo total de generación eléctrica para el Cono Sur, escenario de precios constantes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>21,272</td>
<td>29,260</td>
<td>39,280</td>
<td>53,371</td>
<td>6.3%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>21,272</td>
<td>29,444</td>
<td>39,967</td>
<td>54,946</td>
<td>6.5%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>21,272</td>
<td>25,741</td>
<td>33,606</td>
<td>44,644</td>
<td>5.1%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>21,272</td>
<td>25,454</td>
<td>33,480</td>
<td>46,916</td>
<td>5.4%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>21,272</td>
<td>25,630</td>
<td>34,070</td>
<td>48,245</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
Es importante observar que, para el Cono Sur, en el escenario de precios crecientes de los combustibles, el escenario ECN, tiene un menor costo anual de generación, para el año 2030, que el escenario EPA, pese a que su generación es mayor, sin embargo, en el escenario de precios constantes, su costo anual de generación sí es mayor (Figura 11.18).

11.6.4 Costo total de inversión en generación eléctrica

En el Cono Sur, el sobrecosto de inversión en generación eléctrica, en el período de proyección, es del 17% para el escenario EPA y del 25% para el escenario ECN, respecto al escenario BAU (Figura 11.19).
11.6.5 Proyección de los LCOE ponderados por escenarios energéticos

Tabla 11.39. LCOE total para el Cono Sur, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>75</td>
<td>89</td>
<td>106</td>
<td>127</td>
<td>3.6%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>75</td>
<td>90</td>
<td>108</td>
<td>131</td>
<td>3.8%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>75</td>
<td>74</td>
<td>85</td>
<td>98</td>
<td>1.8%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>75</td>
<td>74</td>
<td>83</td>
<td>91</td>
<td>1.3%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>75</td>
<td>75</td>
<td>85</td>
<td>94</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.40. LCOE total para el Cono Sur, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>75</td>
<td>83</td>
<td>93</td>
<td>105</td>
<td>2.3%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>75</td>
<td>84</td>
<td>95</td>
<td>108</td>
<td>2.5%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>75</td>
<td>72</td>
<td>79</td>
<td>88</td>
<td>1.1%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>75</td>
<td>72</td>
<td>80</td>
<td>87</td>
<td>1.0%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>75</td>
<td>73</td>
<td>81</td>
<td>90</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Figura 11.20. Proyección del LCOE total para el Cono Sur, según los escenarios de precios de los combustibles

Al 2030 los LCOE de los escenarios EPA y ECN, registran una disminución del 23% y 29%, respecto de los del BAU, para un escenario de precios crecientes de los combustibles y del 16 y 17%, para un escenario de precios constantes de los combustibles (ver Tablas 11.39 y 11.40).
11.7 El Caribe

11.7.1 Costos unitarios de inversión

Tabla 11.41. Proyección de los costos unitarios de inversión para El Caribe, (US$/kW)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>2,800</td>
<td>3,091</td>
<td>3,413</td>
<td>3,768</td>
<td>2.0%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>978</td>
<td>1,213</td>
<td>1,504</td>
<td>1,866</td>
<td>4.4%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>1,342</td>
<td>1,664</td>
<td>2,064</td>
<td>2,540</td>
<td>4.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>3,636</td>
<td>4,509</td>
<td>5,993</td>
<td>6,936</td>
<td>4.4%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>2,500</td>
<td>0.0%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>0.0%</td>
</tr>
<tr>
<td>Eólica</td>
<td>2,200</td>
<td>2,200</td>
<td>2,100</td>
<td>2,100</td>
<td>0.0%</td>
</tr>
<tr>
<td>Solar</td>
<td>2,500</td>
<td>2,500</td>
<td>2,300</td>
<td>2,300</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6,000</td>
<td>6,956</td>
<td>8,064</td>
<td>9,348</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia en base a datos del "Annual Energy Outlook", 2017 de la EIA, USA

11.7.2 Proyección de los LCOE por tecnologías

Tabla 11.42. LCOE para El Caribe, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>77</td>
<td>86</td>
<td>97</td>
<td>110</td>
<td>2.4%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>77</td>
<td>87</td>
<td>100</td>
<td>115</td>
<td>2.8%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>53</td>
<td>65</td>
<td>79</td>
<td>97</td>
<td>4.2%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>207</td>
<td>258</td>
<td>321</td>
<td>400</td>
<td>4.5%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>81</td>
<td>100</td>
<td>123</td>
<td>152</td>
<td>4.3%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>60</td>
<td>65</td>
<td>71</td>
<td>79</td>
<td>1.8%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>85</td>
<td>85</td>
<td>82</td>
<td>82</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>181</td>
<td>181</td>
<td>168</td>
<td>168</td>
<td>-0.5%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>112</td>
<td>129</td>
<td>149</td>
<td>172</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.43. LCOE para El Caribe, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroeléctrica</td>
<td>77</td>
<td>86</td>
<td>97</td>
<td>110</td>
<td>2.4%</td>
</tr>
<tr>
<td>Hidroeléctrica (RCP8.5)</td>
<td>77</td>
<td>87</td>
<td>100</td>
<td>115</td>
<td>2.8%</td>
</tr>
<tr>
<td>Gas natural</td>
<td>53</td>
<td>58</td>
<td>64</td>
<td>71</td>
<td>2%</td>
</tr>
<tr>
<td>Diesel-Fuel</td>
<td>207</td>
<td>222</td>
<td>239</td>
<td>261</td>
<td>1.4%</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>81</td>
<td>99</td>
<td>121</td>
<td>149</td>
<td>4.1%</td>
</tr>
<tr>
<td>Biomasa</td>
<td>60</td>
<td>65</td>
<td>71</td>
<td>79</td>
<td>1.8%</td>
</tr>
<tr>
<td>Geotermia</td>
<td>78</td>
<td>83</td>
<td>88</td>
<td>95</td>
<td>1.3%</td>
</tr>
<tr>
<td>Eólica</td>
<td>85</td>
<td>85</td>
<td>82</td>
<td>82</td>
<td>-0.3%</td>
</tr>
<tr>
<td>Solar</td>
<td>181</td>
<td>181</td>
<td>168</td>
<td>168</td>
<td>-0.5%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>112</td>
<td>128</td>
<td>147</td>
<td>169</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
Figura 11.21. Proyección de los LCOE para El Caribe, según los escenarios de precios de los combustibles

En El Caribe, si bien las tecnologías de generación eléctrica con ERNC, como la eólica y la biomasa, resultan ser muy competitivas respecto a las demás tecnologías, la solar fotovoltaica, presenta un valor de LCOE, relativamente alto, debido al mayor costo de inversión y un menor factor de planta, en comparación con las otras subregiones, aunque sigue siendo más competitiva que las térmicas que consumen derivados de petróleo (Diesel-Fuel).

11.7.3 Proyección de los costos totales de generación eléctrica

Tabla 11.44. Costo total de generación eléctrica para El Caribe, escenario de precios crecientes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>7,026</td>
<td>10,424</td>
<td>15,561</td>
<td>23,381</td>
<td>8.3%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>7,026</td>
<td>10,455</td>
<td>15,657</td>
<td>23,598</td>
<td>8.4%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>7,026</td>
<td>7,905</td>
<td>11,815</td>
<td>17,355</td>
<td>6.2%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>7,026</td>
<td>7,808</td>
<td>10,135</td>
<td>11,877</td>
<td>3.6%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>7,026</td>
<td>7,849</td>
<td>10,296</td>
<td>12,318</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.45. Costo total de generación eléctrica para El Caribe, escenario de precios constantes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>7,026</td>
<td>9,108</td>
<td>11,997</td>
<td>16,070</td>
<td>5.7%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>7,026</td>
<td>9,136</td>
<td>12,074</td>
<td>16,226</td>
<td>5.7%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>7,026</td>
<td>7,085</td>
<td>9,543</td>
<td>12,802</td>
<td>4.1%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>7,026</td>
<td>6,944</td>
<td>8,205</td>
<td>9,231</td>
<td>1.8%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>7,026</td>
<td>6,979</td>
<td>8,325</td>
<td>9,517</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
En El Caribe, es bastante marcada la diferencia en los costos anuales de generación eléctrica, para el año 2030, entre los escenarios BAU, EPA y ECN. En esta subregión, el costo en el escenario ECN, es menor que en el EPA, debido al menor requerimiento de generación y a la diversificación de las tecnologías. El escenario ECN, permite un ahorro del 49%, respecto al escenario BAU, con precios crecientes de los combustibles y del 43% con precios constantes de los combustibles (Figura 11.22).

11.7.4 Costo total de inversión en generación eléctrica

Pese a la menor generación en los escenarios EPA y ECN, respecto al BAU, existen sobrecostos de inversión debido a la diversificación de la matriz de generación eléctrica. Estos sobrecostos son del 39% y 59% respectivamente, respecto al escenario BAU.
11.7.5 Proyección de los LCOE ponderados por escenarios energéticos

Tabla 11.46. LCOE total para El Caribe, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>128</td>
<td>158</td>
<td>196</td>
<td>242</td>
<td>4.3%</td>
</tr>
<tr>
<td>Escenario BAU (RCP 8.5)</td>
<td>128</td>
<td>158</td>
<td>196</td>
<td>242</td>
<td>4.3%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>128</td>
<td>122</td>
<td>152</td>
<td>186</td>
<td>2.5%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>128</td>
<td>126</td>
<td>142</td>
<td>140</td>
<td>0.6%</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>128</td>
<td>126</td>
<td>144</td>
<td>144</td>
<td>0.8%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>128</td>
<td>122</td>
<td>152</td>
<td>186</td>
<td>2.5%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>128</td>
<td>126</td>
<td>142</td>
<td>140</td>
<td>0.6%</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>128</td>
<td>126</td>
<td>144</td>
<td>144</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Tabla 11.47. LCOE total para El Caribe, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>128</td>
<td>138</td>
<td>151</td>
<td>166</td>
<td>1.7%</td>
</tr>
<tr>
<td>Escenario BAU (RCP 8.5)</td>
<td>128</td>
<td>138</td>
<td>151</td>
<td>166</td>
<td>1.7%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>128</td>
<td>109</td>
<td>123</td>
<td>137</td>
<td>0.5%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>128</td>
<td>112</td>
<td>115</td>
<td>109</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>128</td>
<td>112</td>
<td>116</td>
<td>111</td>
<td>-1.0%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>128</td>
<td>109</td>
<td>123</td>
<td>137</td>
<td>0.5%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>128</td>
<td>112</td>
<td>115</td>
<td>109</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>128</td>
<td>112</td>
<td>116</td>
<td>111</td>
<td>-1.0%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Figura 11.24. Proyección del LCOE total para El Caribe, según los escenarios de precios de los combustibles

Al 2030 los LCOE de los escenarios EPA y ECN, registran una disminución del 23% y 42%, respecto de los del BAU, para un escenario de precios crecientes de los combustibles y del 17 y 35% para el escenario de precios constantes de los combustibles (ver Tablas 11.46 y 11.47).

11.8 América Latina y El Caribe (ALC)

11.8.1 Proyección de los costos totales de generación eléctrica

Tabla 11.48. Costo total de generación eléctrica para ALC, escenario de precios crecientes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>117,055</td>
<td>166,893</td>
<td>237,802</td>
<td>339,818</td>
<td>7.4%</td>
</tr>
<tr>
<td>Escenario BAU (RCP 8.5)</td>
<td>117,055</td>
<td>167,914</td>
<td>241,267</td>
<td>347,375</td>
<td>7.5%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>117,055</td>
<td>137,572</td>
<td>183,558</td>
<td>249,303</td>
<td>5.2%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>117,055</td>
<td>131,009</td>
<td>172,093</td>
<td>263,054</td>
<td>5.5%</td>
</tr>
<tr>
<td>Escenario ECN (RCP 8.5)</td>
<td>117,055</td>
<td>132,096</td>
<td>175,748</td>
<td>272,206</td>
<td>5.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
Tabla 11.49. Costo total de generación eléctrica para ALC, escenario de precios constantes de los combustibles (MUS$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>117,055</td>
<td>155,628</td>
<td>207,437</td>
<td>278,008</td>
<td>5.9%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>117,055</td>
<td>156,553</td>
<td>210,529</td>
<td>284,633</td>
<td>6.1%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>117,055</td>
<td>132,547</td>
<td>170,548</td>
<td>225,735</td>
<td>4.5%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>117,055</td>
<td>126,856</td>
<td>163,748</td>
<td>245,493</td>
<td>5.1%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>117,055</td>
<td>127,800</td>
<td>166,540</td>
<td>251,697</td>
<td>5.2%</td>
</tr>
</tbody>
</table>

Figura 11.25. Proyección del costo total de generación eléctrica para ALC, según los escenarios de precios de los combustibles

Para la región integral de ALC, en el año 2030, el ahorro en costo de generación eléctrica, asociado al escenario ECN, respecto al escenario BAU, resulta ser del 23%, para el escenario de precios crecientes de los combustibles y del 12%, para el escenario de precios constantes de los combustibles, mientras que en todo el período de proyección, el escenario ECN, permitiría un ahorro acumulado de MUS$ 75,524 para el escenario de precios crecientes de los combustibles y de MUS$ 27,782 para el escenario de precios constantes, respecto al escenario EPA. Cabe observar también que el costo de generación en el escenario ECN, es mayor al del EPA, al final del período de proyección debido a la mayor cantidad de energía generada.

11.8.2 Valores de LCOE total, ponderados por escenario para ALC

Tabla 11.50. LCOE total para ALC, escenario de precios crecientes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>75</td>
<td>88</td>
<td>104</td>
<td>123</td>
<td>3.4%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>75</td>
<td>88</td>
<td>105</td>
<td>125</td>
<td>3.5%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>75</td>
<td>73</td>
<td>82</td>
<td>93</td>
<td>1.5%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>75</td>
<td>72</td>
<td>82</td>
<td>91</td>
<td>1.3%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>75</td>
<td>72</td>
<td>82</td>
<td>91</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación
Tabla 11.51. LCOE total para ALC, escenario de precios constantes de los combustibles (US$/MWh)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario BAU</td>
<td>75</td>
<td>82</td>
<td>91</td>
<td>100</td>
<td>2.0%</td>
</tr>
<tr>
<td>Escenario BAU(RCP8.5)</td>
<td>75</td>
<td>82</td>
<td>92</td>
<td>102</td>
<td>2.1%</td>
</tr>
<tr>
<td>Escenario EPA</td>
<td>75</td>
<td>70</td>
<td>76</td>
<td>84</td>
<td>0.8%</td>
</tr>
<tr>
<td>Escenario ECN</td>
<td>75</td>
<td>70</td>
<td>76</td>
<td>83</td>
<td>0.7%</td>
</tr>
<tr>
<td>Escenario ECN(RCP8.5)</td>
<td>75</td>
<td>70</td>
<td>77</td>
<td>84</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Fuente: resultados de la simulación

Figura 11.26. Proyección del LCOE total para ALC, según los escenarios de precios de los combustibles

Al 2030, los costos nivelados de producción de energía eléctrica (LCOE) de la región ALC en los escenarios EPA y ECN, se reducen un 27% y 19% respectivamente, en relación a los del escenario BAU, para un escenario de precios internacionales crecientes de los combustibles; y 23% y 12% respectivamente, para un escenario de precios constantes de los combustibles.
11.8.3 Costo total de inversión en generación eléctrica

Figura 11.27. Costo total de inversión en generación eléctrica para ALC, en el período de proyección

Al igual que en todas las subregiones analizadas, para la región integral de ALC, los escenarios EPA y ECN, presentan sobrecostos totales de inversión en el período de proyección (19% para el EPA y 55% para el ECN), respecto al escenario BAU. Estos sobrecostos incluyen: el costo del incremento de la capacidad de generación eléctrica necesaria para abastecer la mayor electrificación del consumo final, considerado dentro de las medidas de eficiencia energética; y el costo de diversificación de la matriz de generación eléctrica orientada a la mayor participación de las ERNC (Anexo IV).

Es importante destacar que tanto a nivel regional como subregional, en términos de LCOE, la energía eólica resulta ser la fuente más competitiva en relación a las fuentes convencionales y a otras ERNC, quedando para el año 2030, en la mayoría de subregiones aproximadamente al mismo nivel del gas natural.

Estos resultados, en definitiva, ponen de manifiesto que la adopción de las premisas del escenario ECN, tiene un impacto positivo no sólo sobre las emisiones de GEI sino también sobre los costos de producción de electricidad. No obstante, lo anterior, no puede soslayarse el hecho que las inversiones incrementales en la producción de electricidad, tanto en el escenario ECN como en el EPA, superan a las del escenario BAU. En particular, dichas inversiones incrementales en el escenario ECN, exceden en más de un 55% y 30%, a las respectivas inversiones de los escenarios BAU y EPA, lo que en algunos países puede implicar una restricción en la promoción de un desarrollo más acelerado de las renovables en la matriz de generación eléctrica.
12. Conclusiones
12. Conclusiones

12.1 Conclusiones por subregiones

12.1.1 Brasil

Como se pudo observar en los capítulos 7 y 10, Brasil obtuvo mediante la simulación del escenario EPA, una reducción de emisiones de GEI, para el año 2030, de aproximadamente el 10%, respecto al escenario BAU, que como se advirtió en dichos capítulos, estaría por debajo de las metas planteadas por la mayoría de los países y de la meta referencial regional; y además, la tasa de crecimiento promedio anual de dichas emisiones durante el período de proyección (2.6%) estaría por encima de la máxima estimada por el Ministerio de Minas y Energía - MME, para el sector energético (1.8%), a fin de cumplir con las metas establecidas en los NDCs de Brasil (ver tabla 7.1).

Por otra parte, con el escenario ECN, se alcanzó alrededor de un 35% de reducción de emisiones respecto al escenario BAU, lo que está por encima de las metas generales de la mayoría de los países y de la meta regional tomada como referencia (25 a 30%), y además, la tasa de crecimiento promedio anual de dichas emisiones (0.5%), es menor que la máxima esperada por el MME para el sector energético (1.8%), lo que se podría considerar una exitosa contribución al cumplimiento de sus NDCs. Esto se da principalmente gracias a una reducción de la demanda de energía del 11% respecto de la del EPA y 14% respecto a la del BAU; el descenso de la participación de petrolíferos en el consumo final (40% ECN vs 47% EPA y 47% BAU), una mayor renovabilidad de la matriz de generación eléctrica (92% ECN vs 85% EPA y 74% BAU) y una mayor renovabilidad de la matriz de oferta total (49% ECN vs 41% EPA y 41% BAU). Importa resaltar que de la reducción total de emisiones que se observa al contrastar los escenarios energéticos ECN y BAU en el año 2030, el aporte del sector eléctrico es del 36%.

En el Capítulo 11, se observa que, al 2030 los LCOE de los escenarios EPA y ECN, registran una disminución del 15% y 16% respectivamente, en relación a los del BAU, para un escenario de precios crecientes de los combustibles; y del 9% y 8% para un escenario de precios constantes de los combustibles.

12.1.2 México

Al 2030 las emisiones de GEI del escenario energético EPA presentan una reducción del 14% respecto de las del BAU, lo cual, asumiendo para el sector energético, una meta similar a la establecida en sus NDCs (25%), es sustancialmente inferior. Con el escenario ECN propuesto, esta reducción alcanzaría valores cercanos al 24%, lo que significa prácticamente un cumplimiento de la meta. Ello sería principalmente resultado de una reducción de la demanda del 13% respecto a la del escenario EPA y 16% en relación a la del escenario BAU; una mayor participación de las renovables en la generación eléctrica respecto al escenario BAU (34% ECN vs 18% BAU), y una disminución del peso del petróleo y derivados en la oferta total de energía (25% ECN vs 33% EPA y 38% BAU), con un incremento de la renovabilidad de esta matriz (18% ECN, vs 14% EPA y 8% BAU). Cabe destacar que, la meta de reducción de emisiones se logra, pese a la preponderancia que mantiene el uso del gas natural en la matriz energética de México.

Respecto al análisis económico, se observa que al año 2030, las ERNC, son más competitivas en términos de LCOE, que los petrolíferos y el carbón mineral y en el caso la energía eólica, compite muy de cerca con el gas natural. El escenario ECN, permite además un ahorro en el costo total de generación eléctrica del 17% y del 9% respecto al BAU, para los escenarios de precios crecientes y constantes de los combustibles, respectivamente.
12.1.3 América Central

Aunque el porcentaje de reducción de emisiones de GEI, lograda con el escenario EPA al año 2030, respecto al escenario BAU, es importante (17.5%), todavía algunos NDCs, condicionales de países de la subregión, plantean metas más ambiciosas (ejemplo: Guatemala 22.5%). Por su parte, la reducción de emisiones de GEI que se obtendría bajo los supuestos del escenario energético ECN, alcanza el 30%. Ello sería principalmente resultado de una reducción de la demanda del 27% respecto a la del escenario EPA y 29%, respecto a la del BAU, impulsada por una vigorosa política de sustitución de la leña por energías modernas. En esta subregión, con el escenario ECN, se verifica una disminución de la renovabilidad en la oferta total de energía respecto al escenario EPA (45% ECN vs 49% EPA), debido a que la fuerte reducción en el uso de la biomasa (particularmente leña) que se registra en el escenario ECN, no llega a ser compensada por las políticas de impulso a la penetración de energías renovables modernas. En el escenario ECN, se observa un ascenso en la participación del petróleo y derivados en la matriz de consumo final, respecto al escenario EPA (52% ECN vs 47% EPA), debido a la sustitución de biomasa por GLP, pero también se produce un importante incremento en la participación de electricidad (25% ECN vs 14% EPA y 15% BAU). En lo que concierne a la generación de energía eléctrica, las renovables se mantienen en valores del entorno del 76%, en tanto que el gas natural experimenta un leve ascenso en menoscabo del uso del carbón y los petrolíferos (22% ECN vs 19% EPA). Adicionalmente se constata que de la reducción total de emisiones que se obtiene al contrastar los escenarios energéticos ECN y BAU en el año 2030, la contribución del sector eléctrico alcanza aproximadamente el 41%. Por su parte, al 2030 los LCOE de los escenarios EPA y ECN registran una disminución, respecto al escenario BAU del 34% y 35% respectivamente, en el escenario de precios crecientes de los combustibles; y del 23% y 25% respectivamente, en el escenario de precios constantes de los combustibles.

12.1.4 Subregión Andina

Al 2030 las emisiones de GEI del escenario energético EPA presentan una reducción del 7.4% respecto de las del BAU, lo que dista bastante de una meta referencial de entre el 20% y 25% de acuerdo a las NDCs, enunciados por los países de esta subregión. Sin embargo, la reducción de emisiones de GEI que se obtendría de cumplirse las premisas del escenario ECN, es del 32%. Ello sería principalmente resultado de una reducción de la demanda del 12% respecto a la del escenario EPA y 15% respecto a la del BAU, una mayor penetración de las renovables en la oferta total de energía (29% ECN vs 17% EPA y 14% BAU) y un decrecimiento en la participación del petróleo y sus derivados (37% ECN vs 44% EPA y 51% BAU). Lo más relevante en la evolución de la matriz de generación eléctrica, es el fuerte incremento en la participación de las renovables (78% ECN vs 66% EPA y 65% BAU), en sustitución del carbón y los petrolíferos. La contribución del sector eléctrico en la reducción total de emisiones conseguida en escenario ECN, respecto al escenario BAU en el año 2030, es del 34%. Por su parte, al 2030 los LCOE de los escenarios EPA y ECN, registran una disminución del 38% y 39% respectivamente, en comparación con los del BAU, para un escenario de precios crecientes de los combustibles y del 23% en ambos casos para un escenario de precios constantes de los combustibles.
12.1.5 Cono Sur

Al 2030 las emisiones de GEI del escenario energético EPA presentan una reducción del 8.5% respecto de las del BAU, lo que es claramente inferior a la meta referencial del 20%, para el sector energético de la subregión, considerada con base en las NDCs de los países que la integran. Por su parte, el escenario energético ECN, consigue una reducción de emisiones de GEI cercanos al 26%, resultado principalmente de una reducción de la demanda del 15%, respecto al escenario BAU y 12% respecto al EPA, una mayor participación de las renovables en la oferta total de energía (30% ECN vs 22% EPA y 20% BAU), y una sustancial disminución en la oferta de petrolíferos (23% ECN vs 29% EPA y 33% BAU). En lo referente a la matriz de consumo final, destaca el aumento en la participación de la energía eléctrica (28% ECN al 22% EPA y BAU), desplazando a los petrolíferos. En la generación eléctrica se constata un significativo aumento en la participación de las renovables (60% ECN vs 54% EPA y 46% BAU), en detrimento del uso de carbón y principalmente de los petrolíferos. De la reducción total de emisiones que se observa al contrastar los escenarios energéticos ECN y BAU en el año 2030, el sector eléctrico contribuye con el 39%. Se observa, además, que al 2030 los LCOE de los escenarios EPA y ECN, registran una disminución del 23% y 29%, respecto de los del BAU, para un escenario de precios crecientes de los combustibles y del 16 y 17%, para un escenario de precios constantes de los combustibles.

12.1.6 El Caribe

Al 2030 las emisiones de GEI del escenario energético EPA presentan una reducción del 10.4% respecto de las del BAU. Dicha disminución es bastante inferior a la meta referencial del 15% establecida para el sector energético de la subregión, de acuerdo a las NDCs de los países que la integran. Sin embargo, la reducción emisiones de GEI que se obtendría en el escenario ECN, es del orden del 27%, lo cual se lograría principalmente gracias a una reducción de la demanda del 9%, respecto a la del escenario BAU, un incremento en la renovabilidad de la oferta total de energía (23% ECN vs 18% EPA y 13% BAU) y un incremento en la participación del gas natural (50% ECN vs 45% EPA y 43% BAU), en detrimento del petróleo y sus derivados. Por su parte, la matriz de generación eléctrica del escenario ECN, presenta un importante aumento de la participación de las fuentes renovables (45% ECN vs 26% EPA y 8% BAU) y del gas natural (51% ECN vs 44% EPA y 40% BAU); desplazando de manera significativa el uso del carbón y derivados del petróleo. El aporte del sector eléctrico a la reducción total de emisiones que se observa al contrastar los escenarios energéticos ECN y BAU en el año 2030, es particularmente importante en esta subregión, alcanzando un valor aproximado al 83%. Por su parte, al 2030 los LCOE de los escenarios EPA y ECN, registran una disminución del 23% y 42%, respecto de los del BAU, para un escenario de precios crecientes de los combustibles y del 17 y 35% para el escenario de precios constantes de los combustibles.
12.1.7 América Latina y El Caribe

Dado que al 2030, el escenario EPA, presenta una disminución de apenas el 10% de las emisiones de CO2e, para el sector energético, respecto de las del BAU y considerando la magnitud de los porcentajes de reducción expresados en las NDCs, individuales de los países, se concluye que las políticas actualmente vigentes son insuficientes a los efectos de alcanzar los objetivos propuestos en dichas NDCs. Por tal motivo, con el planteamiento del escenario energético ECN, en el que se profundizaron las políticas de incentivo a la eficiencia energética, se avanza más aun en la penetración de las energías renovables y se da mayor aliento al consumo del gas natural, como alternativa al uso de derivados del petróleo; la reducción de emisiones de GEI del sector energético al año 2030, alcanza un valor cercano al 30%, en relación al escenario BAU, lo que resultaría satisfactorio, considerando la meta referencial definida en el capítulo 4 para el sector energético de la región integral de ALC (25 a 30%).

Existe un incremento en la renovabilidad de la oferta total de energía en el escenario ECN, al año 2030 (34% ECN vs 27% EPA y 24% BAU). Concomitantemente con lo anterior, se constata una disminución en la participación del petróleo y sus derivados (32% ECN vs 38% EPA y 41% BAU). Por su parte, las medidas adicionales de impulso a la eficiencia energética implementadas en el escenario ECN, posibilitaron una reducción de la demanda de energía del 12% respecto a la del EPA y del 15% respecto a la del BAU. Los resultados a nivel de la matriz de consumo final, muestran un descenso en la participación del petróleo y derivados (42% ECN vs. 50% EPA y 50% BAU) y un aumento en la participación de la energía eléctrica (26% ECN vs. 20% EPA y 20% BAU). En lo referente a la generación eléctrica, comparando ambos escenarios se constata un importante aumento en la participación de las energías renovables (70% ECN vs 63% EPA y 52% BAU), en reemplazo del carbón y los petrolíferos.

Es importante destacar que la contribución de la generación eléctrica, en la reducción total de emisiones de GEI de la matriz energética, alcanzada con el escenario ECN, respecto al escenario BAU, para el año 2030, es del 38%.

En lo referente a la dimensión económica, los resultados muestran que al 2030, los costos nivelados de producción de energía eléctrica (LCOE - US$/MWh) de la región ALC en los escenarios EPA y ECN, se reducen un 27% y 19% respectivamente, en relación a los del escenario BAU, para un escenario de precios internacionales crecientes de los combustibles; y 23% y 12% respectivamente, para un escenario de precios constantes de los combustibles.

Los escenarios BAU, EPA y ECN se modelaron bajo la premisa de que al 2030, los efectos del Cambio Climático tanto sobre la oferta como sobre la demanda de energía resultan de poca significación. Dada la incertidumbre reinante sobre la evolución del referido fenómeno y sus efectos, se realizó un análisis de sensibilidad ante la eventualidad de ocurrencia de un escenario extremo de Cambio Climático, a cuyos efectos se consideró el escenario climático RCP8.5. Los resultados de dicho análisis para ALC muestran al 2030 afectaciones moderadas tanto en la oferta de energía (particularmente debidas a variaciones en las hidrologías de las diferentes cuencas) como en la demanda energética (esencialmente por causa del efecto del aumento de temperatura sobre los usos calefacción y acondicionamiento de aire). La incorporación de dichos impactos en la modelación de los escenarios BAU y ECN, permite extraer como conclusión relevante, la robustez del escenario energético ECN, frente a los efectos de un escenario de cambio climático más drástico. Es así que, en tales circunstancias, el diferencial de emisiones entre ambos escenarios energéticos, registra al 2030 una reducción del 27.8%, valor que sobrepasa la meta referencial regional mínima del 25% definida para el Sector. No obstante lo anterior, importa dejar constancia que ante la ocurrencia de un escenario climático de dichas características, las emisiones en términos absolutos del escenario ECN experimentan un leve aumento del 2.6%, sin que esto ponga en entredicho la robustez del escenario ECN, ya que simplemente apuntaría la necesidad de adaptar
ligeramente las medidas de promoción de energías renovables previstas en dicho escenario a los retos que pudieran ir planteando los efectos del cambio climático en cada zona, ya fuese aplicando medidas de adaptación en los sistemas hidroeléctricos o bien incrementado el uso de otras fuentes renovables. En lo referente al impacto del CC sobre los LCOE, al año 2030, para el escenario ECN, es del 3% para un escenario de precios crecientes de los combustibles y de solamente el 2% para un escenario de precios constantes de los combustibles.

La realización del análisis de sensibilidad a la intensidad del Cambio Climático a nivel de las subregiones arroja los mismos resultados en cuanto a la robustez de los respectivos escenarios ECN, ya que en todas las subregiones se constata que, ante la ocurrencia de un escenario de Cambio Climático extremo, al 2030 las reducciones de emisiones que se obtiene (ECN(RCP8.5) vs BAU(RCP8.5)), sobrepasa las respectivas metas referenciales de cada subregión. Aunque cabe consignar que en todos los casos dichas reducciones son levemente inferiores a las resultantes en los escenarios con efecto despreciables del CC. También se observa que al 2030 en todas las subregiones, los LCOE de los respectivos escenarios ECN, son sustancialmente menores que los escenarios BAU y moderadamente inferiores a los del EPA.

Las hipótesis respecto de la evolución de los precios de las fuentes energéticas y sus tecnologías asociadas, se construyeron a partir de escenarios de precios de referencia tomados de publicaciones internacionales de notoria idoneidad en la materia. A los efectos del presente estudio se consideró oportuno la realización de un análisis de sensibilidad frente a la ocurrencia de un escenario de precios más desfavorable al desarrollo de las energías renovables y la eficiencia energética. Es así que los precios de los combustibles fósiles se congelaron a valores de 2015, y se analizó su impacto sobre los LCOE. Los resultados muestran que para el conjunto de la región, aún bajo estas hipótesis, al 2030 los LCOE de los escenarios EPA y ECN, resultan un 16% y 18% inferiores a los del escenario BAU, respectivamente.

Al extender el análisis de sensibilidad anterior a nivel de las subregiones, se observa que en todos los casos los LCOE de los escenarios EPA y ECN, resultan inferiores a los del escenario BAU, aunque en porcentajes menores a los que se registraban con precios crecientes de los combustibles. Siendo las subregiones Andina, Centroamérica y El Caribe, las que alcanzan las mayores reducciones, y esta última donde la diferencia entre los LCOE de los escenarios ECN y EPA, registra los mayores guarismos, 35% y 17% respectivamente.
12.2 Conclusiones finales

En síntesis y como conclusiones finales para el conjunto de la región ALC, cabe señalar que de continuar las políticas actualmente vigentes (premisas del escenario EPA), la reducción de emisiones de GEI que se obtendría al 2030 respecto de las proyectadas en el escenario BAU, estaría bastante por debajo de la meta referencial mínima del 25% considerada para el sector a los efectos de este estudio. En contraste, de cumplirse las premisas que conforman el escenario ECN, al 2030 se podrían alcanzar importantes reducciones adicionales en las emisiones de GEI del sector energético, que permitirían alcanzar e incluso superar dicha meta referencial. Los resultados del estudio muestran que dichas reducciones pueden alcanzarse a través de políticas que apuesten por un mayor incremento en la participación de las energías renovables en la oferta total de energía (principalmente en detrimento del uso del petróleo y sus derivados) y por un mayor impulso a la eficiencia energética, con el consiguiente impacto sobre la demanda de energía.

Con referencia a la matriz de consumo final, resaltan como premisas del escenario ECN, el significativo aumento en la penetración de la energía eléctrica y el importante descenso en la participación del petróleo y sus derivados respecto al escenario EPA, si bien en ambos escenarios los petrolíferos continúan manteniendo un peso relevante. En cuanto a la matriz de generación eléctrica, en consonancia con el mayor impulso al desarrollo de las renovables propuesto para el escenario ECN, la participación de las mismas en el 2030 se elevaría en forma notoria, alcanzando valores próximos al 70% (ver figura 10.64). Es de destacar también el importante aporte del sector eléctrico a la reducción de emisiones de GEI que se verifica en el escenario ECN respecto del BAU (38% del total de las emisiones evitadas al 2030).

Asimismo, los resultados del estudio muestran que al 2030 los LCOE del escenario ECN registran valores levemente inferiores a los del escenario EPA. En tanto que del análisis comparativo de los costos acumulados en el período 2015-2030, también se obtiene que el escenario ECN logra un ahorro de 75,524 MUS$, respecto al EPA, para el escenario de precios crecientes de los combustibles y de 27,782 MUS$, para el escenario de precios constantes. Estos resultados, en definitiva, ponen de manifiesto que la adopción de las premisas del escenario ECN, tiene un impacto positivo no sólo sobre las emisiones de GEI sino también sobre los costos de producción de electricidad. No obstante, lo anterior, no puede soslayarse el hecho que las inversiones incrementales en la producción de electricidad, tanto en el escenario ECN como en el EPA, superan a las del escenario BAU. En particular, dichas inversiones incrementales en el escenario ECN, exceden en más de un 55% y 30%, a las respectivas inversiones de los escenarios BAU y EPA, lo que en algunos países puede implicar una restricción en la promoción de un desarrollo más acelerado de las renovables en la matriz de generación eléctrica.

Tal como se apuntó en la introducción, este estudio pretende impulsar un debate que OLADE estima necesario y para ello ofrece una primera aproximación a los temas analizados. Un análisis en detalle sobre si las metas establecidas en los NDCs son adecuadas y suficientes, que también ofreciese propuestas concretas por país sobre cómo alcanzar su cumplimiento, además de una estimación rigurosa sobre las inversiones necesarias para ello, requeriría contar con los recursos suficientes para poder llevar a cabo un estudio de mayor envergadura.
13. Propuesta general de OLADE para alcanzar los NDCs
13. Propuesta general de OLADE para alcanzar los NDCs

13.1 Propuesta sobre políticas de eficiencia energética

La eficiencia energética se alcanza en la relación entre el conjunto de las conductas y prácticas que requieren energía para su ejecución y las acciones racionales que permiten optimizar la cantidad de energía consumida respecto a los productos y servicios finalmente obtenidos. Esto es válido tanto para el caso en que se busque mantener el nivel de confort o producción, como para el caso que se pretenda su aumento, pudiendo en este último caso incluso aumentar el consumo energético, pero con una mejora más que proporcional en los servicios energéticos provistos (iluminación, calefacción, fuerza motriz, etc.). Por ello, es importante insistir en que la promoción de la eficiencia energética no puede realizarse en desmedro de la calidad de vida de las personas ni afectar negativamente la productividad de los sectores que dinamizan las economías.

Si asumimos que existe, hasta cierto nivel, una importante correlación entre el consumo de energía per cápita y el estándar de vida de la población de un país, y que es comprensible que los habitantes de ALC aspiren a alcanzar estándares de vida más satisfactorios, no cabe duda que la región deberá disponer de una mayor cantidad de energía. Al respecto basta señalar que el consumo de energía per cápita de los países de la OCDE es cuatro veces superior que el de ALC. El sector de la energía bien puede operar como motor que arrastre el desarrollo de los países, sin que por ello no se conciba que los procesos en los que interviene se realicen en forma productiva y eficiente.

En países que poseen necesidades básicas satisfechas, cualquier mejora en la forma de utilizar la energía se traduce en una disminución directa del consumo. Sin embargo, a medida que los indicadores de desarrollo se debilitan, existe una brecha energética que debe ser satisfecha antes que las acciones en eficiencia energética tengan un resultado de ahorro de energía directo. Las mejoras en eficiencia energética en las economías emergentes muchas veces no se traducen en ahorros de energía, sino que son una herramienta adicional para brindar y mejorar el acceso a los recursos energéticos, aumentar la producción y actuar como mecanismo para abatir la pobreza energética. En este contexto, la eficiencia energética tiene un rol protagónico a desempeñar, coadyuvando para desacoplar el crecimiento económico del consumo de energía y elevando los niveles de confort de la población con el mínimo consumo energético posible.

ALC debe prepararse para afrontar un aumento en el consumo de energía, pero de manera eficiente, es decir, reduciendo el consumo innecesario y brindando más y mejores servicios.

La capacidad y continuidad institucional y las decisiones de política sectorial son elementos clave para tener, al menos, expectativas de éxito en la generación, desarrollo e implementación de programas de eficiencia energética. La existencia de una ley de Eficiencia Energética presupone, obviamente, su cumplimiento y, por ende, que el Estado cuente con una adecuada fiscalización, así
como de los mecanismos de promoción y de incentivo al ahorro de energía. Es por eso que desde OLADE, se está buscando asistir a países de la región mediante la propuesta de una Ley Marco Regional de Eficiencia Energética y de Marco Institucional Modelo que pueda ser adaptado a las características de cada país.

Por otro lado, es crítico garantizar la participación de recursos humanos capacitados y con garantía de continuidad en su función. Se requiere formar capacidades locales de cuadros técnicos y gestores de energía, a partir de programas de formación que otorguen certificaciones de carácter regional. Por tal motivo, la participación de las universidades y centros de formación técnica cumplirían un importante rol al catalizar los saberes a través de programas de investigación y formular diplomados y maestrías con niveles de especialización crecientes.

El empleo de balances de energía útil permite un conocimiento más claro del estado de situación de la eficiencia energética y constituye la base para el análisis con respecto a las posibilidades de sustitución de energéticos y competitividad de precios y tarifas entre los diferentes energéticos. Recientemente, OLADE publicó el Manual de Balances de Energía Útil. El uso de los balances de energía útil facilita la evaluación ex post de los programas permitiendo identificar aquellos subsectores con mayor potencial de abatimiento de la intensidad energética. Hoy es posible, como nunca antes, aprovechar el potencial de la informática y del Big Data para medir (hasta en tiempo real) los usos energéticos en algunos sectores, como el transporte.

En el ámbito de las políticas públicas, es necesario superar la idea que se tiene de la eficiencia energética centrada, exclusivamente, en la acción del sector público. Sería deseable entablar una mayor coordinación e integración entre las áreas Ambientales y energéticas, y entre éstas con el sector que gestiona el transporte. Así mismo, es importante evitar la intermitencia de los programas, de manera que se consoliden como verdaderas políticas de estado que no dependan de los actores del momento. Esto permitiría consolidar el abordaje sectorial, generar marcos estables para facilitar incentivos y derribar las barreras que impiden el desarrollo y la dinamización de mecanismos de mercado para facilitar la participación del sector privado, por ejemplo, en el ámbito de las ESCO. Para alcanzar estos objetivos se puede recurrir a metodologías basadas en la formulación de hojas de rutas con participación multisectorial.

Los organismos internacionales, la banca multilateral y las instituciones que promueven la cooperación para el desarrollo tienen como responsabilidad esencial disminuir las brechas de desarrollo entre los países. Para ello se requiere de una mayor coordinación que integre el apoyo técnico que se brinda con las necesidades de financiamiento, permitiendo que los proyectos y programas que promueven se diseñen e implementen, y que logren resultados que puedan sostenerse y consolidarse en el mediano y largo plazo. Así mismo, es importante incentivar las posibilidades de cooperación sur-sur a través de la sistematización de los intercambios de conocimiento técnico y de las redes de expertos existentes. Las capacidades del talento humano en toda la región bien pueden ser aprovechadas por todos los países, de mediar mecanismos dinámicos de comunicación. En tal sentido, resulta importante contar con sistemas de certificación profesional de gestores de la energía que tengan un carácter regional.

Si se toma en cuenta que el sector transporte representa el mayor consumidor de energía en ALC, específicamente de combustibles fósiles, y que los vehículos con motores a combustión interna presentan eficiencias relativamente bajas, resulta evidente la necesidad de priorizar la aplicación de medidas de mejora en este sector. En tal sentido, la coordinación de acciones entre las áreas energéticas y de transporte en el sector público resulta esencial. En los grandes centros urbanos, la suma de la
ineficiencia energética con la improductividad económica, la caída en la calidad de vida y los saltos en los niveles de contaminación local que produce el tráfico urbano debería motivar la formulación de políticas de promoción del cambio modal en el uso del trasporte (modal shift). Estas políticas deberían favorecer el transporte público, alentar el uso compartido de vehículos (carpooling), promover el uso de bicicletas a través de vías exclusivas y la penetración de vehículos eléctricos, además de alentar esquemas de trabajo a distancia y, en algunos casos, instaurar restricciones horarias a la circulación vehicular; incluso podría considerarse tarificar zonas céntricas de alta concentración de actividad. Sumado a todo esto, es posible avanzar, como lo han hecho varios países, en la implementación de sistemas de revisión técnica vehicular, capacitar a choferes del transporte público promoviendo la conducción eficiente y proveer información a los consumidores mediante la implementación de sistemas de etiquetado de automóviles y vehículos de carga.

Algunos países presentan metas ambiciosas respecto a la penetración de vehículos eléctricos en el parque automotor. Sin embargo, para que este tipo de vehículos pueda alcanzar una participación importante en el sector transporte terrestre (especialmente en el privado) se requerirán importantes inversiones en infraestructura de redes de distribución, y que la mejora tecnológica consiga reducir sus costos e incrementar de manera significativa su autonomía. Por lo pronto, se ve mayor factibilidad en la implementación de sistemas de transporte público masivo en los grandes centros urbanos, como líneas de metro, teleféricos y tranvías.

Si bien las medidas de eficiencia energética en el transporte, al igual que en los otros sectores, han sido representadas en el presente estudio de manera simplificada, el análisis específico de un programa de eficiencia en este sector requiere de un gran volumen de información en cuanto a caracterización del parque vehicular. Dicha información deberá comprender al menos indicadores tales como: consumos específicos por modalidad de transporte, kilómetros recorridos, pasajeros transportados, toneladas desplazadas, factores de ocupación, etc., tanto para el sector carga como para el sector de pasajeros. Por este motivo, se recomienda nuevamente desarrollar balances de energía útil y monitorear y recopilar, en forma continua, este tipo de información, de ser posible en una institución centralizada.

Por otro lado, una participación importante de la energía eléctrica en la matriz de consumo final de energía de un país constituye un indicador no solamente de desarrollo socio-económico, sino también de eficiencia energética, pues la electricidad es la fuente de mayor exergía. Sin embargo, es necesario extender el análisis a toda la cadena de producción y consumo para examinar si los procesos han sido optimizados en cuanto a eficiencia y pureza ambiental.

En este sentido, resulta importante avanzar en la realización de programas de etiquetado de aparatos electrodomésticos y otros dispositivos de uso generalizado, así como en la implementación de estándares mínimos de desempeño energético (minimum energy performance standards - MEPS) en aparatos de alto consumo. De ser posible, se recomienda tener una perspectiva regional, con una mayor integración entre las cámaras de importadores, las aduanas, los entes reguladores y los sistemas de medición de la infraestructura de la calidad y los laboratorios de metrología que no todos los países poseen.

Las metas nacionales de eficiencia energética deben ser definidas en cada país por la entidad estatal que tenga acceso a un panorama holístico, tanto del sector energético como del sector económico y social del país. Contar con una visión integral de las relaciones intersectoriales permitirá asegurar que todas las políticas nacionales contribuyan con los programas de eficiencia energética. En particular, se
deberá prestar especial atención a la implementación de subsidios generalizados a las fuentes de energía, ya que pueden desincentivar la inversión de los consumidores en mejora tecnológica. Aunque los programas de subsidios pueden ser necesarios en muchos casos – para asegurar la accesibilidad a los servicios energéticos modernos de los estratos económicos menos favorecidos –, se recomienda que sean focalizados.

La búsqueda de una mayor penetración de la electricidad o de otras fuentes en usos finales tradicionalmente abastecidos por combustibles fósiles puede implicar una reducción en los ingresos del sector hidrocarburífero de un determinado país. De darse dicha situación no debe descartarse la búsqueda de opciones de compensación que mitiguen el impacto. No obstante, en general este tema es bastante complejo. Algunos países productores, por ejemplo, orientan su petróleo y/o gas natural al mercado interno para la promoción de usos industriales y residenciales (subsidiados en relación a sus costos de oportunidad), en detrimento de una mejor valorización vía exportaciones. En dicho caso, la posibilidad de contar con mayores saldos exportables sería un objetivo a buscar y el desplazamiento del consumo de hidrocarburos para el mercado interno tendría un efecto positivo (dependiendo obviamente del costo de las alternativas).

Los países deberán ir afinando sus programas específicos de eficiencia energética y de mitigación de emisiones de GEI, orientados a la consecución de metas coherentes y afines a la realidad de sus disponibilidades de recursos naturales y económicos. De igual forma, tienen la responsabilidad de realizar un seguimiento continuo del efecto de estos programas para identificar necesidades de refuerzo o, incluso, replanteamiento.

13.2 Propuesta sobre políticas en energías renovables

A lo largo del análisis realizado en el presente estudio, todos los países de la región presentan metas de incremento de participación de las energías renovables en su planificación energética, mediante la incorporación de las mismas en el mix energético de la oferta de energía eléctrica, que representaría al año 2030 en un rango entre 20 y 85%, según el caso, diversificando hacia energías renovables no convencionales, pero con una predominancia de la energía hidroeléctrica por la disponibilidad de fuente hídrica en la región, que hasta el 2015 no representaba más del del potencial hidroeléctrico aprovechable.

Existe el voluntad de los países de la región en consolidar un mix energético diversificado con amplia participación de las energías renovables, se debe acompañar al sector energético proporcionando condiciones apropiadas que viabilicen la incorporación adecuada y sostenible de las energías renovables.

En cuanto a la diversificación de la matriz de generación eléctrica, orientada a la mayor participación de fuentes de energía renovables, debe considerarse aspectos como los potenciales económicamente aprovechables en cada país, la energía firme de respaldo, la competitividad de los costos nivelados de energía, para evitar que afecten negativamente a las tarifas eléctricas, y sobre todo, buscar los mecanismos de financiamiento más adecuados para cubrir los costos de inversión sin que signifiquen un impacto económico para el país.

En efecto, el financiamiento de las inversiones es un asunto fundamental. En la mayoría de los países de la región el grado de madurez y el tamaño de sus sistemas financieros es deficiente. Se cuenta
con pocos instrumentos financieros y la capacidad de abastecer de fondos es limitada. Cada país posee diversas prioridades hacia dónde focalizar sus inversiones en pos de financiar el desarrollo, y dada la escasa capacidad de financiamiento que se suele poseer, podría no ser prioritaria la asignación de recursos hacia las energías renovables no convencionales. Por tal motivo, facilitar mecanismos de financiamiento como los provenientes de la cooperación internacional puede tornarse en un elemento esencial. Ejemplo de ellos son los diversos fondos verdes y las facilidades otorgadas por varios organismos de crédito internacionales.

Otro elemento importante, es la posible formulación de Acuerdos de compra de energía (ó PPA – Power Purchase Agreements –). A través de estos mecanismos se establecen los diversos compromisos de precios y cantidades y las garantías que permiten determinar los flujos monetarios involucrados y, por lo tanto, se establece la calidad crediticia de los proyectos de generación bajo esta modalidad. Para facilitar el financiamiento de proyectos en energías renovables, no dejan de ser relevantes, otros instrumentos con los que se podría contar, como ser: los bonos verdes, la aplicación de impuestos al carbono, el otorgamiento de subsidios focalizados, la venta de permisos de emisiones y los esquemas híbridos que se pudieran suscitar según cada circunstancia.

Además, para captar las inversiones tanto públicas como privadas que se necesitan para incrementar la participación de las renovables, se requieren marcos institucionales y regulatorios estables con reglas claras y procedimientos transparentes.

Por otro lado, para favorecer los efectos de arrastre productivo y la generación de empleo calificado, como parte de los proyectos de desarrollo de energías renovables, particularmente cuando superan cierta escala, se debería considerar la incorporación de componentes locales en el emplazamiento de tales proyectos y no sólo depender de la mera importación de equipos. Para que esto sea posible, se deben articular acciones entre diversos actores, como son empresas proveedoras de insumos, cámaras corporativas, centros de formación técnica y universidades, que dinamizan la necesaria formación de capacidades, diversas áreas del sector público, etc. Para catalizar este tipo de oportunidades se recomienda la formulación de hojas de ruta (technology roadmapping) a partir de las cuales se establezcan los acuerdos y acciones a desarrollar por cada actor y la temporalidad inherente. Así mismo, se recomienda que, a nivel gubernamental, se opere con una visión de Estado y no de gobierno, de manera tal de que todos los actores políticos se sientan involucrados, lo que facilita la continuidad de los procesos en el mediano y largo plazo.

Todo indica que en varios países de la región la biomasa tradicional va a seguir ocupando un lugar destacado en los usos de cocción, calentamiento de agua y calefacción. Es por eso que además de continuar con los esfuerzos por mejorar el acceso a fuentes modernas de energía para cocción, se deberá profundizar en la implementación de programas nacionales de fomento al uso de cocinas a leña eficientes y limpias, con énfasis en el cuidado del medio ambiente, la protección de la salud de las personas y en la atención de los aspectos socioculturales en los que se desenvuelven las familias. Por otra parte, los programas que tienen mayor probabilidad de éxito, son aquellos que propician la participación directa y consciente de los destinatarios, se apoyan en las habilidades técnicas de las comunidades, estimulan la capacidad innovadora de sus organizaciones, e incorporan la dimensión de género en los procesos de elaboración, diseño e implementación de la sustitución de estas tecnologías.

La penetración de las fuentes de energía renovable
en la matriz de consumo final, está asociada de manera directa, al mayor uso de biocombustibles en el sector transporte, con la posibilidad de desplazar, al incrementar las mezclas o por sustitución plena, a combustibles fósiles como la gasolina y el diésel. El mayor uso de biocombustibles debe considerar los potenciales agro energéticos de cada país, los limitantes tecnológicos del parque vehicular y, sobre todo, la formulación de políticas de mercado adecuadas.

Tanto respecto al tema particular de los biocombustibles como de la promoción de la hidroenergía y, parcialmente, en el caso de otros usos del agua, como la refrigeración de plantas térmicas y nucleares), se presenta la complejidad adicional puesta de manifiesto en la enunciación del enfoque Nexo: Agua – Energía – Alimentación. La forma en que la sociedad gestiona sus recursos hídricos, alimentarios y energéticos debería considerar las interdependencias y las complejidades específicas. Se trata de asegurar la consecución del triple objetivo de alcanzar la seguridad energética, hídrica y alimentaria en forma simultánea, por lo que se requiere de mayores niveles de coordinación entre subsectores de gobierno que antaño, yacían aislados. El entrecruzamiento de las agendas de planificación supone un desafío no menor a la hora de gestionar estos 3 importantes sectores de la actividad económica. Para lidiar con este tema, así como ampliar las oportunidades de financiamiento, se recomienda favorecer una mayor coordinación entre la autoridad ambiental y energética, así como con otras áreas transversales.

Durante los últimos años han emergido dos temas que han comenzado a considerarse en ALC. Uno es el de la medición de energía neta (Net Metering) que permite a los consumidores autogenerar energía y ser retribuidos por los excedentes entregados a la red. El otro, el de la generación distribuida que consiste en la producción de energía eléctrica a partir de muchas pequeñas fuentes de energía, generalmente de carácter renovable, en lugares lo más próximos posibles a las cargas de manera tal de facilitar la reducción de emisiones y optimizar los usos de la red. Si se incentiva y crea un mercado para la instalación de pequeños generadores de electricidad con fuentes renovables en los lugares de consumo por parte de los mismos consumidores, se podría lograr una reducción de las inversiones estatales, reducir las emisiones, ahorrar en combustibles fósiles, diversificar la matriz energética y, hasta cierto punto, mejorar la seguridad de suministro. La presencia de este tema supone abordar una cierta complejidad que deberá ser incorporada en la legislación y regulación actuales.

Otro asunto relevante y que históricamente la OLADE ha intentado promover es el de la integración energética regional. Si bien la búsqueda de un mayor grado de autarquía energética por parte de los países se plantea como un objetivo prioritario, los proyectos de integración eléctrica regional pueden también constituirse en facilitadores de la eficiencia energética, así como de la proliferación de energías sostenibles de un país, en la medida en que permitan aumentar la seguridad del suministro, complementar la generación sostenible y obtener energía a menor precio.

En un contexto en el que se van introduciendo en forma creciente fuentes y tecnologías variables no gestionables, y en el que la generación comienza a tener un carácter distribuido, la interconexión entre países se torna en un medio adecuado para complementar las variabilidades de manera eficiente. Aprovechando las diferencias climáticas y los diferentes patrones de consumo dados por los husos horarios, sería posible facilitar la complementariedad en el uso de estas energías sostenibles entre algunos países de nuestra región. De esta forma, a través de la utilización integrada de herramientas de
optimización y simulación para analizar el despacho eléctrico incorporando los intercambios de energía entre países, sería posible optimizar el uso de estas fuentes sostenibles en desmedro de la generación térmica, lo que convertiría a la integración eléctrica regional en un dispositivo útil para promover la generación sostenible de electricidad.

Dados los tremendos cambios operados en los últimos años, el futuro se presenta desafiante y promisorio. Dependerá de (i) las metas establecidas para promover la mayor penetración de fuentes sostenibles, (ii) de la formulación de políticas públicas que apalanquen esa penetración y, a su vez, provean instrumentos y regulaciones adecuadas, (iii) de los incentivos financieros que faciliten la fecundación de mercados, (iv) de la cooperación internacional que permita desarrollar proyectos piloto y apoye la labor de los países a través de asistencias técnicas, (v) de la participación del sector privado, cada vez más compenetrado y consciente de la necesidad de invertir voluntariamente en el tema, (vi) de la necesaria formación de capacidades para que los gestores de energía cuenten con los conocimientos necesarios para gestionar las tecnologías de punta, en sí, (vii) de una mayor coordinación entre todos los actores de la sociedad, que podamos avanzar en mayor o menor grado en la consecución de alcanzar un futuro energético limpio e inclusivo que respete los límites ambientales de nuestro planeta y las necesidades materiales de nuestros pueblos.
Referencias Bibliográficas

Para Brasil

Para México

Para América Central

Para la Subregión Andina

Para el Cono sur
Para El Caribe

[58] Inter-American Development Bank – IADB, (2016). Energy Dossier: Trinidad & Tobago
Referencias generales

Anexos
El SAME es un modelo de simulación de coeficientes técnicos que permite construir diferentes escenarios prospectivos de demanda y oferta de energía para un horizonte de estudio determinado.

Es muy versátil en el método de proyección pudiéndose generar de manera muy ágil escenarios tendenciales, evolutivos o de ruptura, permitiendo simular políticas de diversificación de la matriz de consumo final y de oferta de energía, medidas de reducción de emisiones de gases de efecto invernadero (GEI) y programas de eficiencia energética.

Proporciona como parámetro de comparación entre los escenarios desarrollados, diversos indicadores energéticos, económicos y ambientales, como los siguientes:

- Índice de renovabilidad de la oferta de energía
- Índice de autarquía o suficiencia energética,
- Factor medio de emisiones de GEI de la matriz energética integral
- Factor medio de emisiones de GEI de la matriz de generación eléctrica
- Costo nivelado de energía eléctrica
- Estructura del consumo de energía
- Estructura de la oferta total de energía
- Estructura de la matriz de generación eléctrica
- Balances energéticos proyectados
- Prospectiva de emisiones de GEI
- Prospectiva de la capacidad instalada de generación eléctrica y otra infraestructura de oferta energética
- Alcance de las reservas probadas de fuentes fósiles de energía
- Nivel de aprovechamiento de los potenciales de fuentes renovables de energía
- Proyección de los índices de eficiencia energética por uso final de la energía

Utilidad del Modelo. -

Entre otras aplicaciones del Modelo SAME se puede mencionar las siguientes:
- Es ideal para diseñar y afinar políticas de desarrollo energético sostenible
- Permite actualizar estudios de prospectiva energética ante el cambio de premisas o de coyuntura exógena y endógena
- Construir escenarios exploratorios de futuros coherentes del sector energético
- Construir escenarios tipo roadmap o de anticipación
- Elaborar planes nacionales de desarrollo energético, tanto integrales como sectoriales
Anexo II. Tabla resumen de los NDCs de los países de ALC

<table>
<thead>
<tr>
<th>Subregión</th>
<th>País</th>
<th>Metas Generales</th>
<th>Metas de EE</th>
<th>Metas de EE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incendio</td>
<td>Condicional</td>
<td>Incendio</td>
<td>Condicional</td>
</tr>
<tr>
<td></td>
<td>Inducción</td>
<td>Condicional</td>
<td>Condicional</td>
<td>Condicional</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td>Reducir las emisiones de gases de efecto invernadero en un 27 % por debajo de las cantidades de 2005 en el 2025 y en un 47% para el 2030.</td>
<td>Aumento de biocombustibles sustentables en la matriz energética a 5 % en 2020, aumente el consumo de etanol e incrementar el bioetanol en la matriz de 67 % a 85 % de EE para el 2030.</td>
<td>Aumento de biocombustibles sustentables en la matriz energética a 5 % en 2020, aumente el consumo de etanol e incrementar el bioetanol en la matriz de 67 % a 85 % de EE para el 2030.</td>
</tr>
<tr>
<td></td>
<td>Mexico</td>
<td>Reducir el 25% de sus emisiones de GEI y contaminantes del clima de corta vida por debajo del BAU para el año 2030.</td>
<td>Reducir hasta un 40% de manera condicional. (impliápume que las reducciones de GEI podrían aumentar hasta un 50%, y las reducciones de contaminantes de corta vida de hasta un 90% en 2020. BAU/> 2025: 906 MtCO2e; 2030: 1,110 MtCO2e.</td>
<td>91% participación de energía alternativa y otras energías (fotovoltaico, termal) en la matriz del sector eléctrico a 13,367 MW.</td>
</tr>
<tr>
<td></td>
<td>Bolivia</td>
<td>Reducir las emisiones de GEI del 20% al año 2030, respecto al escenario BAU.</td>
<td>Reducir las emisiones de GEI del 30% al año 2030, respecto al escenario BAU.</td>
<td>Reducción del 25% de sus emisiones de GEI y contaminantes del clima de corta vida por debajo del BAU para el año 2030.</td>
</tr>
<tr>
<td></td>
<td>Colombia</td>
<td>Reducir las emisiones de GEI del 20% al año 2030, respecto al escenario BAU.</td>
<td>Reducir las emisiones de GEI del 30% al año 2030, respecto al escenario BAU.</td>
<td>Reducción del 25% de sus emisiones de GEI y contaminantes del clima de corta vida por debajo del BAU para el año 2030.</td>
</tr>
<tr>
<td></td>
<td>Ecuador</td>
<td>Reducir las emisiones de GEI del 20% al año 2030, respecto al escenario BAU.</td>
<td>Reducir las emisiones de GEI del 30% al año 2030, respecto al escenario BAU.</td>
<td>Reducción del 25% de sus emisiones de GEI y contaminantes del clima de corta vida por debajo del BAU para el año 2030.</td>
</tr>
<tr>
<td></td>
<td>Paraguay</td>
<td>Reducir las emisiones de GEI del 20% al año 2030, respecto al escenario BAU.</td>
<td>Reducir las emisiones de GEI del 30% al año 2030, respecto al escenario BAU.</td>
<td>Reducción del 25% de sus emisiones de GEI y contaminantes del clima de corta vida por debajo del BAU para el año 2030.</td>
</tr>
<tr>
<td></td>
<td>Argentina</td>
<td>Reducir las emisiones de GEI del 20% al año 2030, respecto al escenario BAU.</td>
<td>Reducir las emisiones de GEI del 30% al año 2030, respecto al escenario BAU.</td>
<td>Reducción del 25% de sus emisiones de GEI y contaminantes del clima de corta vida por debajo del BAU para el año 2030.</td>
</tr>
<tr>
<td></td>
<td>Chile</td>
<td>Reducir las emisiones de GEI del 20% al año 2030, respecto al escenario BAU.</td>
<td>Reducir las emisiones de GEI del 30% al año 2030, respecto al escenario BAU.</td>
<td>Reducción del 25% de sus emisiones de GEI y contaminantes del clima de corta vida por debajo del BAU para el año 2030.</td>
</tr>
<tr>
<td></td>
<td>Paraguay</td>
<td>10% de reducción de emisiones proyectadas en 2030. BAU año base 2011: 146 MTCO2e; 2020: 226 MTCO2e; 2030: 416 MTCO2e.</td>
<td>10% de reducción de emisiones proyectadas en 2030, aproximado a la meta incondicional.</td>
<td>Reducción del 25% de sus emisiones de GEI y contaminantes del clima de corta vida por debajo del BAU para el año 2030.</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>Disminuir intensidad en 20% en relación a los valores de 1990. BAU 2070 en relación a los valores de 1990 con medidas de implementación adicionales.</td>
<td>Disminuir intensidad en 20% en relación a los valores de 1990 con medidas de implementación adicionales.</td>
<td>Disminuir intensidad en 20% en relación a los valores de 1990 con medidas de implementación adicionales.</td>
</tr>
</tbody>
</table>
Zona Andina

Subregión País Metas Generales Metas de ER Metas de EE

México

El Salvador

Costa Rica

Nicaragua

Belize

2030). MtCO2e en ese año.

Para el año 2030, serán emisiones GEI totales del año cápita al 2100.

-0,27 toneladas netas per cápita para el 2030; 1.19 toneladas TCO2eq netas al 2030, con máximo absoluto de hasta el año 2033 (National MtCO2e).

88% de reducción de sus valores de 1990. En 2017 un 28 922 Gg de CO2eq.

Reducir emisiones de CO2 a 369 MtCO2eq en el 2030.

Máximo absoluto de emisiones de 9.374.000 TCO2eq netas al 2030, con una India propuesta de emisiones per cápita de 1.73 toneladas netas per cápita para el 2030; 1.19 toneladas netas per cápita al 2030 y -0,27 toneladas netas per cápita al 2030.

Alcanzar y mantener una generación eléctrica 100% renovable al 2030. Desarrollo propuestas de NRE en Geotermia y en Biomasa.

Creación de un sistema integrado de transporte público donde se impulsa la reducción de los costos de los buses, ampliación del tramo, la integración del transporte no motorizado. Proyecto de tren eléctrico interurbano.

Para el año 2030, la generación eléctrica sea del 80% a partir de fuentes renovables. Impulsar normativa para establecer incentivos fiscales y subsidios enfocados en el uso de energías limpias para el transporte público y privado.

Implementación y mejora del sistema Transmilenio actualmente en operación en la ciudad de Santiago.

Reducción del uso de la leña en el país a través de la Estrategia Nacional de Uso Eficiente y Sostenible de la Leña.

Reducción del 11.2% de sus emisiones GES totales del año base 2008 proyectado al año 2030; implica que las emisiones, en un escenario tendencial de 53.85 MtCO2e para el año 2030, estarán reducidas a un valor de 47.81 MtCO2e en ese año.

Para el año 2030, la generación eléctrica sea del 60% a partir de fuentes renovables. Impulsar normativa para establecer incentivos fiscales y subsidios enfocados en el uso de energías limpias para el transporte público y privado.

A través de la NAMM de hogares eficientes se espera reducir en un 39% el consumo de leña en las familias.

Incrementar el 5% de generación eléctrica por medio de otras fuentes de RR como solar, eólica y biomasa en un 30% en el 2025 con respecto al año 2014. Para el 2030 la participación de RR en la matriz eléctrica será de un 15% instalación de tuberías abastecedoras de gas, como el uso de biogás, con ayuda del sector privado. Construcción del parque eólico de 1,184 MW de ER como la solar y eólica, equivalente al 41,8 % de la capacidad instalada en el 2014.

Impulsar el uso de nuevas tecnologías para obtener mejoras en la eficiencia, generación, almacenamiento, transmisión y distribución de energía. Modificar y crear nuevos marcos regulatorios de promoción de ER.

Indicar que se necesitará avance internacional para lograr las metas, pero no diferenciarse entre meta condicional o meta incondicional.

<table>
<thead>
<tr>
<th>País</th>
<th>Metas Generales</th>
<th>Metas de ER</th>
<th>Metas de EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>México</td>
<td>Reducción de 3,4 MCO2eq hasta el año 2033 (National Sustainable Energy Strategy)</td>
<td>Reducción de la intensidad energética per cápita al menos en un 30% para el año 2033; reducir dependencia de importaciones de combustibles en 30% para 2020 usando 99. 85% de participación de ER para 2030.</td>
<td>Lograr al menos una reducción del 20% en el uso de combustible de transporte convencional para 2030 y promover la EE en el sector del transporte a través de publicas e inversiones adecuadas.</td>
</tr>
<tr>
<td>El Salvador</td>
<td>Máximo absoluto de emisiones de 9.374.000 TCO2eq netas al 2030, con una India propuesta de emisiones per cápita de 1.73 toneladas netas per cápita para el 2030; 1.19 toneladas netas per cápita al 2030 y -0,27 toneladas netas per cápita al 2030.</td>
<td>Alcanzar y mantener una generación eléctrica 100% renovable al 2030. Desarrollo propuestas de NRE en Geotermia y en Biomasa.</td>
<td>Creación de un sistema integrado de transporte público donde se impulsa la reducción de los costos de los buses, ampliación del tramo, la integración del transporte no motorizado. Proyecto de tren eléctrico interurbano.</td>
</tr>
<tr>
<td>Guatemala</td>
<td>Reducción del 11.2% de sus emisiones GES totales del año base 2008 proyectado al año 2030; implica que las emisiones, en un escenario tendencial de 53.85 MtCO2e para el año 2030, estarán reducidas a un valor de 47.81 MtCO2e en ese año.</td>
<td>Para el año 2030, la generación eléctrica sea del 60% a partir de fuentes renovables. Impulsar normativa para establecer incentivos fiscales y subsidios enfocados en el uso de energías limpias para el transporte público y privado.</td>
<td>Implementación y mejora del sistema Transmilenio actualmente en operación en la ciudad de Santiago.</td>
</tr>
<tr>
<td>Honduras</td>
<td>Reducción de un 15% de las emisiones respecto al necesario BAU al 2030. El BAU de emisiones es el siguiente: Año 2010: 18 915 Gg de CO2eq. Año 2020: 22 677 Gg de CO2eq. Año 2030: 28 912 Gg de CO2eq.</td>
<td>Para el año 2030, la generación eléctrica sea del 80% a partir de fuentes renovables. Impulsar normativa para establecer incentivos fiscales y subsidios enfocados en el uso de energías limpias para el transporte público y privado.</td>
<td>A través de la NAMM de hogares eficientes se espera reducir en un 39% el consumo de leña en las familias.</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Incrementar el 5% de generación eléctrica por medio de otras fuentes de RR como solar, eólica y biomasa en un 30% en el 2025 con respecto al año 2014. Para el 2030 la participación de RR en la matriz eléctrica será de un 15% instalación de tuberías abastecedoras de gas, como el uso de biogás, con ayuda del sector privado. Construcción del parque eólico de 1,184 MW de ER como la solar y eólica, equivalente al 41,8 % de la capacidad instalada en el 2014.</td>
<td>Impulsar el uso de nuevas tecnologías para obtener mejoras en la eficiencia, generación, almacenamiento, transmisión y distribución de energía. Modificar y crear nuevos marcos regulatorios de promoción de ER.</td>
<td>Indicar que se necesitará avance internacional para lograr las metas, pero no diferenciarse entre meta condicional o meta incondicional.</td>
</tr>
</tbody>
</table>
Evaluación de compromisos en cambio climático en América Latina y el Caribe

<table>
<thead>
<tr>
<th>País</th>
<th>Reducción en GHG emissions de 44% comparado a su BAU</th>
<th>Contribuyendo al 7% de RDPE de 2020 en la matriz energética.</th>
<th>Contribuyendo al 7% de RDPE de 2020 en la matriz energética.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surinam</td>
<td>30% reducción de energía en transporte pesado y ferroviario</td>
<td>30% reducción de energía en transporte pesado y ferroviario</td>
<td>30% reducción de energía en transporte pesado y ferroviario</td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>30% reducción de energía en transporte pesado y ferroviario</td>
<td>30% reducción de energía en transporte pesado y ferroviario</td>
<td>30% reducción de energía en transporte pesado y ferroviario</td>
</tr>
</tbody>
</table>

- **Comparación con el BAU en 2030**:
 - **Reducción de energía en transporte pesado y ferroviario**: 30% reducción en relación con el BAU en 2030.
 - **Incremento en el uso de EE**: Promueve el uso de EE en la matriz energética, lo que implica un crecimiento del 10% en el uso de EE en relación con el BAU en 2030.

Cuba

- **Grenada**:
 - **Reducción en transporte y energía**: 30% en transporte y energía en comparación con el BAU en 2030.

El Caribe

- **Guyana**:
 - **Reducción de energía en transporte pesado y ferroviario**: 30% reducción en transporte pesado y ferroviario en comparación con el BAU en 2030.

República Dominicana

- **Reducción del 25% del año base 2010 de emisiones para el año 2030**:
 - **Reducción de energía en transporte pesado y ferroviario**: 30% reducción en transporte pesado y ferroviario en comparación con el BAU en 2030.
Anexo III. Eficiencias relativas en el consumo final

<table>
<thead>
<tr>
<th>Fuente / Tecnología</th>
<th>Tránsito</th>
<th>Industria</th>
<th>Residencial</th>
<th>Comercio y Servicios</th>
<th>Agro, pesca y minería</th>
<th>Construcción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Convencional</td>
<td>Eficiente</td>
<td>Convencional</td>
<td>Eficiente</td>
<td>Convencional</td>
<td>Eficiente</td>
</tr>
<tr>
<td>Petróleo</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas natural</td>
<td>0.75</td>
<td>0.75</td>
<td>0.85</td>
<td>0.75</td>
<td>0.80</td>
<td>0.75</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>0.40</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>0.20</td>
<td>0.40</td>
<td>0.15</td>
<td>0.30</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Leña</td>
<td>0.30</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otros combustibles</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Electricidad</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>GLP</td>
<td>0.70</td>
<td>0.70</td>
<td></td>
<td></td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Gasolina</td>
<td>0.60</td>
<td>0.70</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Kerosene y Jet Fuel</td>
<td>0.65</td>
<td>0.75</td>
<td>0.65</td>
<td>0.75</td>
<td>0.65</td>
<td>0.70</td>
</tr>
<tr>
<td>Diesel Oil</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Gases</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Coque</td>
<td>0.40</td>
<td>0.50</td>
<td></td>
<td></td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Carbón vegetal</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Etanol</td>
<td>0.40</td>
<td>0.40</td>
<td></td>
<td></td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Biodiesel</td>
<td>0.65</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otros secundarios</td>
<td>0.40</td>
<td>0.40</td>
<td></td>
<td></td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Coeficientes intrínsecos del Modelo SAME - OLADE. Estos valores han sido definidos en consulta con expertos de OLADE.
Anexo IV. Medidas de eficiencia energética y diversificación del consumo final consideradas en el escenario ECN

<table>
<thead>
<tr>
<th>Sub-región</th>
<th>Transporte</th>
<th>Industrial</th>
<th>Residencial</th>
<th>Comercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasil</td>
<td>- 20% de diesel por electricidad</td>
<td>- 20% de gas natural por electricidad</td>
<td>- 50% de leña por GLP</td>
<td>- 20% de leña por GLP</td>
</tr>
<tr>
<td></td>
<td>- 30% de gasolina por electricidad</td>
<td>- 80% de gas natural por gas natural eficiente</td>
<td>- 20% de leña por gas natural</td>
<td>- 20% de leña por gas natural</td>
</tr>
<tr>
<td></td>
<td>- 50% de diesel por diesel eficiente</td>
<td>- 20% de coque por gas natural</td>
<td>- 20% de GLP por electricidad</td>
<td>- 20% de GLP por electricidad</td>
</tr>
<tr>
<td></td>
<td>- 60% de gasolina por gasolina eficiente</td>
<td>- 80% de electricidad por electricidad eficiente</td>
<td>- 20% de electricidad por solar</td>
<td>- 20% de electricidad por sol</td>
</tr>
<tr>
<td></td>
<td>- 30% de gasolina por etanol</td>
<td>- 60% de coque por coque eficiente</td>
<td>- 20% de GLP por solar</td>
<td>- 20% de GLP por solar</td>
</tr>
<tr>
<td></td>
<td>- 10% de diesel por biodiesel</td>
<td>- 50% de coque por productos de caña eficiente</td>
<td>- 20% de electricidad por electricidad eficiente</td>
<td>- 50% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 60% de leña por leña eficiente</td>
<td>- 50% de leña por leña eficiente</td>
<td>- 50% de leña por leña eficiente</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 50% de leña por gas natural</td>
<td>- 50% de gas natural por gas natural eficiente</td>
<td>- 50% de GLP por GLP eficiente</td>
</tr>
<tr>
<td>México</td>
<td>- 20% de diesel por electricidad</td>
<td>- 50% de leña por GLP</td>
<td>- 20% de leña por GLP</td>
<td>- 20% de leña por GLP</td>
</tr>
<tr>
<td></td>
<td>- 30% de gasolina por electricidad</td>
<td>- 20% de GLP por electricidad</td>
<td>- 20% de leña por GLP</td>
<td>- 20% de leña por GLP</td>
</tr>
<tr>
<td></td>
<td>- 50% de diesel por diesel eficiente</td>
<td>- 80% de gas natural por electricidad eficiente</td>
<td>- 20% de electricidad por electricidad eficiente</td>
<td>- 20% de electricidad por electricidad eficiente</td>
</tr>
<tr>
<td></td>
<td>- 60% de gasolina por gasolina eficiente</td>
<td>- 80% de electricidad por electricidad eficiente</td>
<td>- 20% de GLP por solar</td>
<td>- 20% de GLP por solar</td>
</tr>
<tr>
<td></td>
<td>- 10% de gasolina por etanol</td>
<td>- 80% de electricidad por electricidad eficiente</td>
<td>- 80% de GLP por GLP eficiente</td>
<td>- 80% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td>- 5% de diesel por biodiesel</td>
<td>- 10% de leña por leña eficiente</td>
<td>- 10% de leña por leña eficiente</td>
<td>- 10% de leña por leña eficiente</td>
</tr>
<tr>
<td>América Central</td>
<td>- 20% de diesel por electricidad</td>
<td>- 20% de leña por GLP</td>
<td>- 20% de leña por GLP</td>
<td>- 20% de leña por GLP</td>
</tr>
<tr>
<td></td>
<td>- 30% de gasolina por electricidad</td>
<td>- 20% de GLP por electricidad</td>
<td>- 20% de leña por GLP</td>
<td>- 20% de leña por GLP</td>
</tr>
<tr>
<td></td>
<td>- 50% de diesel por diesel eficiente</td>
<td>- 80% de gas natural por electricidad eficiente</td>
<td>- 20% de electricidad por electricidad eficiente</td>
<td>- 20% de electricidad por electricidad eficiente</td>
</tr>
<tr>
<td></td>
<td>- 60% de gasolina por gasolina eficiente</td>
<td>- 80% de electricidad por electricidad eficiente</td>
<td>- 20% de GLP por solar</td>
<td>- 20% de GLP por solar</td>
</tr>
<tr>
<td></td>
<td>- 20% de gasolina por etanol</td>
<td>- 80% de electricidad por electricidad eficiente</td>
<td>- 80% de GLP por GLP eficiente</td>
<td>- 80% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td>- 10% de diesel por biodiesel</td>
<td>- 10% de leña por leña eficiente</td>
<td>- 10% de leña por leña eficiente</td>
<td>- 10% de leña por leña eficiente</td>
</tr>
<tr>
<td>Subregión Andina</td>
<td>- 20% de diesel por electricidad</td>
<td>- 20% de leña por GLP</td>
<td>- 50% de leña por GLP</td>
<td>- 40% de leña por gas natural</td>
</tr>
<tr>
<td></td>
<td>- 30% de gasolina por electricidad</td>
<td>- 40% de leña por gas natural</td>
<td>- 20% de electricidad por electricidad eficiente</td>
<td>- 20% de electricidad por electricidad eficiente</td>
</tr>
<tr>
<td></td>
<td>- 50% de diesel por diesel eficiente</td>
<td>- 20% de GLP por solar</td>
<td>- 20% de GLP por solar</td>
<td>- 20% de GLP por solar</td>
</tr>
<tr>
<td></td>
<td>- 60% de gasolina por gasolina eficiente</td>
<td>- 80% de electricidad por electricidad eficiente</td>
<td>- 80% de GLP por GLP eficiente</td>
<td>- 80% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td>- 20% de gasolina por etanol</td>
<td>- 80% de electricidad por electricidad eficiente</td>
<td>- 80% de gas natural por gas natural eficiente</td>
<td>- 80% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td>- 10% de diesel por biodiesel</td>
<td>- 50% de GLP por GLP eficiente</td>
<td>- 50% de leña por leña eficiente</td>
<td>- 50% de leña por leña eficiente</td>
</tr>
<tr>
<td>Resto del Cono Sur</td>
<td>- 20% de diesel por electricidad</td>
<td>- 20% de leña por GLP</td>
<td>- 50% de leña por GLP</td>
<td>- 50% de leña por GLP</td>
</tr>
<tr>
<td></td>
<td>- 30% de gasolina por electricidad</td>
<td>- 30% de GLP por GLP eficiente</td>
<td>- 30% de GLP por GLP eficiente</td>
<td>- 30% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td>- 50% de diesel por diesel eficiente</td>
<td>- 30% de GLP por GLP eficiente</td>
<td>- 30% de GLP por GLP eficiente</td>
<td>- 30% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td>- 60% de gasolina por gasolina eficiente</td>
<td>- 30% de GLP por GLP eficiente</td>
<td>- 30% de GLP por GLP eficiente</td>
<td>- 30% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td>- 20% de gasolina por etanol</td>
<td>- 80% de GLP por GLP eficiente</td>
<td>- 80% de GLP por GLP eficiente</td>
<td>- 80% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td>- 10% de diesel por biodiesel</td>
<td>- 20% de GLP por GLP eficiente</td>
<td>- 20% de GLP por GLP eficiente</td>
<td>- 20% de GLP por GLP eficiente</td>
</tr>
<tr>
<td>El Caribe</td>
<td>- 10% de diesel por electricidad</td>
<td>- 20% de Fuel Oil por electricidad</td>
<td>- 20% de Fuel Oil por electricidad</td>
<td>- 20% de Fuel Oil por electricidad</td>
</tr>
<tr>
<td></td>
<td>- 16% de gasolina por electricidad</td>
<td>- 80% de electricidad por electricidad eficiente</td>
<td>- 80% de electricidad por electricidad eficiente</td>
<td>- 80% de electricidad por electricidad eficiente</td>
</tr>
<tr>
<td></td>
<td>- 4% de gasolina por etanol</td>
<td>- 60% de gas natural por gas natural eficiente</td>
<td>- 60% de gas natural por gas natural eficiente</td>
<td>- 60% de gas natural por gas natural eficiente</td>
</tr>
<tr>
<td></td>
<td>- 6% de gasolina por etanol</td>
<td>- 60% de electricidad por electricidad eficiente</td>
<td>- 60% de electricidad por electricidad eficiente</td>
<td>- 60% de electricidad por electricidad eficiente</td>
</tr>
<tr>
<td></td>
<td>- 5% de gasolina por etanol</td>
<td>- 50% de GLP por GLP eficiente</td>
<td>- 50% de GLP por GLP eficiente</td>
<td>- 50% de GLP por GLP eficiente</td>
</tr>
<tr>
<td></td>
<td>- 5% de diesel por biodiesel</td>
<td>- 50% de GLP por GLP eficiente</td>
<td>- 50% de GLP por GLP eficiente</td>
<td>- 50% de GLP por GLP eficiente</td>
</tr>
</tbody>
</table>

Evaluación de compromisos en cambio climático en América Latina y el Caribe
Anexo V. Factores de emisión de CO₂e por fuente y actividad

<table>
<thead>
<tr>
<th>Fuente \ Actividad</th>
<th>Generación Eléctrica</th>
<th>Consumo final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transporte</td>
<td>Industrial</td>
</tr>
<tr>
<td>Petróleo</td>
<td>455</td>
<td>441</td>
</tr>
<tr>
<td>Gas natural</td>
<td>288</td>
<td>369</td>
</tr>
<tr>
<td>Carbón mineral</td>
<td>548</td>
<td>548</td>
</tr>
<tr>
<td>GLP</td>
<td>389</td>
<td>393</td>
</tr>
<tr>
<td>Gasolina</td>
<td>276</td>
<td>423</td>
</tr>
<tr>
<td>Kerosene y Jet Fuel</td>
<td>420</td>
<td>428</td>
</tr>
<tr>
<td>Diesel Oil</td>
<td>406</td>
<td>445</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>431</td>
<td>441</td>
</tr>
<tr>
<td>Gases</td>
<td>288</td>
<td>369</td>
</tr>
<tr>
<td>Coque</td>
<td>630</td>
<td>630</td>
</tr>
</tbody>
</table>

Fuente: SieLAC, OLADE, 2017
Anexo VI. Participación del sector energético en las emisiones totales de CO$_2$e

<table>
<thead>
<tr>
<th>País</th>
<th>Número de Comunicación Nacional</th>
<th>Año de Comunicación Nacional</th>
<th>Último año registrado de emisiones</th>
<th>Emisiones Totales (kt CO$_2$e)</th>
<th>Emisiones netas (contando sumideros) (kt CO$_2$e)</th>
<th>Emisiones Sector Energía (kt CO$_2$e)</th>
<th>Participación sector energía en Emisiones Totales (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasil</td>
<td>3ra</td>
<td>2010</td>
<td>2010</td>
<td>1,364,197</td>
<td>374,554</td>
<td>27,5</td>
<td></td>
</tr>
<tr>
<td>México</td>
<td>5ta</td>
<td>2012</td>
<td>2010</td>
<td>748,252</td>
<td>503,818</td>
<td>67,3</td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td>2da</td>
<td>2009</td>
<td>2012</td>
<td>85,331</td>
<td>10,202</td>
<td>12,0</td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>3ra</td>
<td>2017</td>
<td>2012</td>
<td>258,797</td>
<td>185,640</td>
<td>30,1</td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>3ra</td>
<td>2017</td>
<td>2012</td>
<td>100,397</td>
<td>80,627</td>
<td>37,9</td>
<td></td>
</tr>
<tr>
<td>Perú</td>
<td>3ra</td>
<td>2016</td>
<td>2012</td>
<td>187,534</td>
<td>171,310</td>
<td>44,638</td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td>1ra</td>
<td>2005</td>
<td>1999</td>
<td>192,133</td>
<td>177,836</td>
<td>143,668</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>3ra</td>
<td>2015</td>
<td>2012</td>
<td>429,437</td>
<td>338,922</td>
<td>183,378</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>3ra</td>
<td>2016</td>
<td>2013</td>
<td>109,909</td>
<td>70,054</td>
<td>85,075</td>
<td></td>
</tr>
<tr>
<td>Paraguay</td>
<td>3ra</td>
<td>2016</td>
<td>2012</td>
<td>183,607</td>
<td>167,377</td>
<td>5,709</td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td>4ta</td>
<td>2016</td>
<td>2012</td>
<td>38,890</td>
<td>36,765</td>
<td>8,461</td>
<td></td>
</tr>
<tr>
<td>Belice</td>
<td>3ra</td>
<td>2016</td>
<td>2009</td>
<td>12,921</td>
<td>4,413</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>3ra</td>
<td>2014</td>
<td>2010</td>
<td>9,262</td>
<td>8,789</td>
<td>7,081</td>
<td></td>
</tr>
<tr>
<td>El Salvador</td>
<td>2da</td>
<td>2013</td>
<td>2005</td>
<td>14,627</td>
<td>14,453</td>
<td>5,910</td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>2da</td>
<td>2016</td>
<td>2005</td>
<td>31,446</td>
<td>6,954</td>
<td>12,166</td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>2da</td>
<td>2012</td>
<td>2000</td>
<td>66,344</td>
<td>13,829</td>
<td>4,066</td>
<td></td>
</tr>
<tr>
<td>Nicaragua</td>
<td>2da</td>
<td>2011</td>
<td>2000</td>
<td>11,981</td>
<td>59,477</td>
<td>3,922</td>
<td></td>
</tr>
<tr>
<td>Panamá</td>
<td>2da</td>
<td>2012</td>
<td>2000</td>
<td>26,402</td>
<td>-1,871</td>
<td>4,814</td>
<td></td>
</tr>
<tr>
<td>Barbados</td>
<td>1ra</td>
<td>2001</td>
<td>1997</td>
<td>4,056</td>
<td>4,045</td>
<td>2,027</td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>2da</td>
<td>2015</td>
<td>2002</td>
<td>36,340</td>
<td>23,835</td>
<td>26,113</td>
<td></td>
</tr>
<tr>
<td>Granada</td>
<td>1ra</td>
<td>2000</td>
<td>1994</td>
<td>1,606</td>
<td>1,514</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Guyana</td>
<td>2da</td>
<td>2012</td>
<td>2004</td>
<td>3,072</td>
<td>-51,572</td>
<td>1,657</td>
<td></td>
</tr>
<tr>
<td>Haití</td>
<td>2da</td>
<td>2013</td>
<td>2000</td>
<td>6,683</td>
<td>7,832</td>
<td>1,568</td>
<td></td>
</tr>
<tr>
<td>Jamaica</td>
<td>2da</td>
<td>2011</td>
<td>1994</td>
<td>116,314</td>
<td>166,147</td>
<td>8,231</td>
<td></td>
</tr>
<tr>
<td>República Dominicana</td>
<td>2da</td>
<td>2009</td>
<td>2000</td>
<td>26,433</td>
<td>7,639</td>
<td>18,247</td>
<td></td>
</tr>
<tr>
<td>Surinam</td>
<td>2da</td>
<td>2016</td>
<td>2003</td>
<td>3,330</td>
<td>4,871</td>
<td>2,404</td>
<td></td>
</tr>
<tr>
<td>Trinidad & Tobago</td>
<td>2da</td>
<td>2013</td>
<td>1990</td>
<td>16,006</td>
<td>14,510</td>
<td>9,928</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: http://di.unfccc.int/detailed_data_by_party