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Over the past ten years, the cost of technology for variable renewable energy (VRE) such as wind and 
solar energy, has declined considerably, providing a cost-effective and sustainable means of meeting 
electricity demand in developing and middle-income countries. Taking advantage of variable sources of 
energy requires significant expansion and modernization of electrical grids and implementation of VRE-
specific technologies, processes and requirements to gradually transition power systems into “VRE-
friendly” grids that will significantly reduce integration costs in the long term. The need for technical 
assistance on VRE integration is greatest in countries with limited capacity to tackle technical and 
regulatory challenges. To meet this growing demand, the Energy Sector Management Assistance 
Program (ESMAP) of the World Bank has prepared a set of technical guides that can help World Bank 
staff and clients understand some of the essential requirements and available technical and regulatory 
measures to integrate large shares of VRE into power grids without compromising the adequacy, 
reliability or affordability of electricity. The technical guides have been developed as a joint initiative 
between ESMAP’s Variable Renewable Energy (VRE) Grid Integration Support Program and the Global 
Sustainable Electricity Partnership (GSEP). The Global Sustainable Electricity Partnership is a not-for-
profit international organization comprising the leading companies in the global electricity sector who 
promote sustainable energy development through electricity sector projects and human capacity-
building activities in developing nations worldwide.  

It is projected for the next five years that annual worldwide addition of solar and wind energy will 
continue to grow and is likely to at least double compared to their current share in power systems. 
Modern renewable energy generation technologies provide a strong alternative for grid electrification in 
locations where renewable resources are abundant and are starting to become the least-cost option in 
many of the client countries thanks to rapid decline in prices. For this, many emerging economies have 
started to adopt policies to encourage the development of the industry to realize the benefits that 
renewable power generation can have for their energy supply and on the local environment. Solar and 
wind installations can be built relatively quickly, which presents a major incentive in rapidly-growing, 
emerging markets with urgent need for power and also tackle the realization of climate change 
commitments.  

The key challenging issue, however, is the intermittent nature of solar and wind power, which increases 
the complexity of overall grid operations. The grid operators have to manage variability of the energy 
resource, reliability of grid operations and least-cost optimal performance. The fast penetration of 
renewable energy, and especially, a high level of their penetration into the power grid requires an 
adapted power system planning, better forecasting methods, introduces challenges in grid 
management, imposes stringent requirements for VRE integration into the grid, and necessitates 
standardization and structured process for the conducting studies to ensure compliance with the grid 
code requirements. The basic grid support services are becoming now relevant to all generators, 
including VREs, which are connected to medium and lower voltage levels. The modern electricity 
industry is restructuring with two major trends: significant increase of renewable energy and 
deregulation providing consumers with energy purchasing options of highly reliable delivery. However, 
deregulation, open energy access, and cogeneration are creating scenarios of transmission congestion 
and forced outages. Restructuring envisions the transmission grid as flexible, reliable, and open to all 
exchanges no matter where the suppliers and consumers of energy are located. The modernization of 



 

the grid requires the increased power quality, system stability, and increased transfer capacity of the 
transmission. New approaches to Power System Operation and Control are gaining the development 
momentum for overload relief and efficient and reliable operation. High-voltage direct current (HVDC) 
and Flexible Alternating Current Transmissions Systems (FACTS) technologies appear especially effective 
for improvement of grid operations and management.  

The proliferation of smarter infrastructure, enabling participation of increasing amounts of demand in 
activities also help mitigate the variability of renewable generation along with technological advances of 
renewable and complementary technologies like batteries allow renewable generators themselves to 
effectively contribute to maintaining reliability. A variety of emerging end-use technologies like electrical 
vehicles, heat pumps, and smart and efficient buildings enable greater flexibility in power systems and 
lead to higher demand for wind and solar. These technologies help to enable even greater usage of VRE 
resources, but at the same time, they bring additional challenges of overall grid operations, which 
require new approaches to system operation and planning to ensure that the new trends contribute to 
clean, reliable and affordable power systems. A shorter dispatch cycles in combination with more 
accurate shorter-term forecasts of renewable generation can be used to reduce forecast variations from 
renewable generators and result in reduced ancillary service requirement. A look-ahead unit 
commitment and stochastic unit commitment can effectively deal with uncertainty. Wind farm can be 
tasked to provide frequency response, inertial response, and regulation if they meet eligibility 
requirements. Storage technologies are beginning to be gradually deployed or included in provision of 
ancillary services. Frequency regulation market, which awards quick-start and fast responding resources 
including batteries, has been attracting an increasing amount of battery storage and new ways of using 
storage. There are also ongoing innovations combining variable renewable production with measures 
aiming to make demand more responsive. The benefits and effectiveness of new emerging trends are 
well recognized, but there are yet to reach full maturity and become standardized.  The focus of the 
technical guides is primarily on the industry proven technologies and methodologies, which have 
already been established, widely adopted, and continue to proliferate in electrical utilities. However, the 
discussion of some new VRE related technologies that have already started influencing the utility 
landscape (e.g. dynamic energy storage, implementation of superconducting materials in fault current 
limiting devices, advanced forecasting methodologies, wind farm synthetic inertia and regulation 
response) are selectively included in the technical guide material where appropriate. 

The information presented in the technical guides is compiled from various sources of information to 
serve as a high-level guidance and quick reference for the World Bank personnel on electrical power 
system projects involving implementation of VRE along with associated technologies and analysis. The 
technical guides are comprised of the following four sets of sub-documents, which are identified as the 
subjects of prime technical interest for VRE implementation: 

• Grid Integration Requirements for Variable Renewable Energy 

• Compensation Devices to Support Grid Integration of Variable Renewable Energy 

• Studies for Grid Connection of Variable Renewable Energy Generation Plants 

• Using Forecasting Systems to Reduce Cost and Improve the Dispatch of Variable Renewable 
Energy 
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“Grid Integration Requirements for Variable Renewable Energy” document presents a general 
overview of VRE technology along with some recommendations for VRE technical specifications, 
applicable standards, and essential testing. The main focus of the document presents a detailed outline 
of the essential requirements of VRE power plants integration into power grid. The different levels of 
VRE penetration in the grid determine different technical requirements for VRE integration. However, 
some of the requirements are fundamental and need to be respected for a VRE integration in any power 
system, e.g. regulation and automatic response to grid events, power quality, protection system, 
forecasting and analysis. The basic and advanced VRE integration requirements are discussed in detail in 
this document in order to provide a guiding reference for VRE projects regardless of the grid code’s 
maturity. All essential requirements in the grid are summarized in the checklist table and can be used in 
course of VRE’s project planning, implementation, and connection to the grid. The compliance with the 
technical requirements and grid code where applicable is validated through extensive series of 
interconnection studies such as steady state analysis, short-circuit and circuit breaker duty review, 
dynamic stability, and facility studies.   

“Compensation Devices to Support Grid Integration of Variable Renewable Energy” document 
provides an overview of FACTS and other compensation devices along with the essential characteristics 
describing industry need, applicable standards, functionality, applications, and recommendations for 
minimal technical specification.  The main objective of the document is to discuss all available FACTS 
technologies with the underlying concept of independent control of active and reactive power flows, the 
essential differences and benefits of FACTS devices, and industry applications. Classification and 
comparison of performance factors are analyzed in detail and summarized to orient the reader in the 
wide spectrum of FACTS devices, and their effects on the power system. The applications of FACTS 
devices are associated with the following essential technical enhancements: System Capacity, System 
Reliability, Power Quality, System Controllability. Environmental benefits of FACTS are obtained through 
the deferral of the construction of much more expensive transmission lines and better utilization of 
existing system assets. 

“Studies for Grid Connection of Variable Renewable Energy Generation Plants” discusses the power 
system studies requirements for the stable grid integration of renewable energy plants. These 
requirements differ depending on the size of generation, the location of the connection, and whether it 
is transmission or distribution system. The main purpose of screening studies involved in the 
interconnection process is a successful integration of the VRE into the grid. Power system planning for 
interconnection of new variable generation resources ensures that there are sufficient energy resources 
and evacuation capacity to interconnect new supply, and that demand requirements are met in a 
reliable and efficient manner.  Also, the studies verify that adequate reserves and necessary system 
resources exist to reliably serve demand under credible contingencies such as the loss of a generating 
unit, a transformer, or a transmission facility. 

“Using Forecasting Systems to Reduce Cost and Improve the Dispatch of Variable Renewable Energy” 
document discusses the need and benefit of forecasting capabilities and how it is becoming more 
relevant to both system operators and large-scale VRE generators. Forecasting solar or wind generation 
over a timeframe of days, hours and minutes before real time power system operations can reduce 
balancing costs, minimize VRE curtailment levels, improve system reliability and ultimately increase the 
penetration of VRE sources in the energy mix. The main objective is to focus primarily on the types of 
forecasting methods and how physical and statistical models are used for developing short- to long-term 
forecasts. Good forecast helps to reduce the gap between contracted supply of power and actual 
provision of power, reducing imbalance costs for the generator. Essentially, an effective forecasting 
system helps move the entire power system closer to a fully merit-order dispatch system, with reduced 



 

uncertainty and costs around variable generation supply. Technological advances in weather 
forecasting, which, together with better data on historical performance of renewable energy, allow 
significantly improved forecasting accuracy of renewable generation, which results in a more efficient 
utilization of VRE. 
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The Technical Guides on VRE grid integration is a joint initiative by the Energy Sector Management 
Assistance Program (ESMAP) of the World Bank and the Global Sustainable Electricity Partnership 
(GSEP). GSEP is a not-for-profit international organization made up of the leading companies in the 
global electricity sector that promotes sustainable energy development through electricity sector 
projects and capacity-building activities in developing countries.  

This Technical Guide is part of ESMAP’s variable renewable energy (VRE) grid integration support 
program. This global program helps World Bank client countries achieve the cost-effective and 
sustainable scale-up of VRE by providing technical assistance, capacity building, and knowledge products 
for the development and implementation of planning, regulatory, market, and operational best 
practices in VRE integration.  

The document on “Using Forecasting Systems to Reduce Cost and Improve Dispatch of Variable 
Renewable Energy” was written by a team comprising Silvia Martinez Romero (Task Team Leader and 
Senior Energy Specialist, ESMAP); Chong Suk Song (Energy Specialist, ESMAP); Fernando de Sisternes 
(Energy Specialist, ESMAP); Martin Schroeder (former Energy Specialist, ESMAP); Sandra Chavez 
(Consultant, World Bank); Varun Nangia (Consultant, World Bank); Chris Edward Jackson (Consultant, 
World Bank); Fabian Koehrer (Consultant, World Bank); and external experts Claudio Pregagnoli (Enel 
Green Power), Eric Desrosiers (Hydro-Québec), and Julien Choisnard (Hydro-Québec). 

The team is grateful to the Secretariat and its members, especially Hydro-Québec and Enel Green 
Power, for their contributions on the first draft of this guide. Slavica Antic (Hydro-Québec) and Luis 
Calzado (Senior Project Advisor at GSEP) provided important insights and recommendations. 

The team also wishes to thank peer reviewers Zuzana Dobrotkova (Senior Energy Specialist, World 
Bank); Amit Jain (Senior Energy Specialist, World Bank); and Alberto Troccoli (World Energy and 
Meteorology Council), who provided valuable comments and constructive insights at various stages of 
this work, including during the Decision Meeting, chaired by Rohit Khanna (Practice Manager, ESMAP). 
Xavier Remi Daudey (Consultant, World Bank) also provided highly valued comments. 

  



 

 

The share of variable renewable energy (VRE) generation is rapidly increasing in power systems across 
the world. Developing countries are seeing unprecedented levels of new installations, thanks in large 
part to cost reductions and technological developments.  

The uncertainty and variability of solar and wind generation, caused by fluctuations in wind speed and 
solar irradiation, present challenges for system operators as VRE penetration levels increases. This 
Technical Guide explains the role of VRE forecasting, in order to provide guidance to developing 
countries that implement it. 

Successful implementation of an advanced forecasting systems is a cost-effective way to facilitate the 
integration of larger shares of solar photovoltaic (PV) and wind generators. VRE forecasting helps 
identify the amount of power that wind or solar PV generators will feed into the grid over the next 
minutes, hours, and days. Implementing forecasting into power system operations can reduce balancing 
costs, minimize VRE curtailment levels, reduce penalties for generation, and improve system reliability.  

Forecasting provides system operators with sufficient advance notice to increase or reduce power 
output from other sources in the face of an expected shortfall or high level of production from 
renewable sources. For a plant operator, a good forecasting system can help reduce the gap between 
contracted supply and actual provision of power, reducing imbalance costs for the generator. More 
accurate forecast models can also allow a generator to bid more confidently and closer to the nominal 
installed capacity of the plant.  

VRE forecasting models convert meteorological variables and/or historical generation data into an 
estimate of the plant’s energy output at any given time horizon. A well-designed system integrates 
physical methods (which model the atmosphere, relying on weather data to calculate the right 
meteorological inputs) and statistical methods (which use time series and historical generation data to 
identify patterns) to project plant output. 

Forecast accuracy is critical to understand the certainty of upcoming predictions and better inform 
decision making. It is affected by factors, including the siting of the plant, the forecast time horizon, local 
weather conditions, the geographic scope, data availability, and data quality.  

Different factors affect the forecasts of solar- and wind-produced energy. Clouds are the primary 
challenge for solar forecasts; terrain complexity is the main factor affecting wind forecasts. Better 
models and more historical data are increasing the accuracy of VRE forecasts. For wind energy, hour-
ahead forecasts have reach impressive levels. The mean absolute error of a regional wind energy 
forecast can be as low as 5 percent for the day-ahead and 3 percent for the hour-ahead forecast (Vaisala 
2015). 

Depending on the design of the system, forecasting can be carried out centrally (by the system 
operator), in a decentralized way (by the VRE generator), or by a combination of both. Combining 
centralized and decentralized forecasts is recommended because of the complementarity of the 
information the system operator and plant operator provide.  

Countries can develop a forecasting system in-house, purchase a system from a commercial provider, or 
contract with company that provides forecasting as a service. Each option has advantages and 
disadvantages. 





 

 
 

Renewable energy is playing an increasingly important role in power systems. It experienced a record 
year in 2017, when renewables accounted for an estimated 70 percent of net additions to global power 
capacity (REN21, 2018). The increase was driven largely by new additions of solar photovoltaic (PV), 
which accounted for 55 percent of newly installed renewable power capacity, as well as increases in 
wind energy. In many countries, the share of variable renewable energy (VRE) generation is expected to 
be much greater in 2023 than in 2017, with a large shift of countries transitioning from 5–10 percent to 
10–20 percent penetration of renewables. Most VRE generation will occur in countries with VRE shares 
of 10–20 percent (IEA 2019).  

Accurately forecasting wind and solar generation is a cost-effective operational solution for managing 
the variability and uncertainty of power systems and enabling its integration (ESMAP 2015). Forecasting 
can help understand and predict the output of VRE generation over time, improving the ability to 
anticipate when additional generation sources will be needed or generation output from other sources 
would need to be reduced to ensure that renewable generation is not curtailed. By providing schedules 
for the availability of dependable capacity (the system’s ability to carry the electric power for the time 
interval and period specified), forecasting can also help plant operators ensure that the renewable 
source can participate effectively in an energy market. A well-designed forecasting system reduces the 
uncertainty of plant output by attempting to predict the output of renewable power plants. Such 
forecasts reduce the need to keep high-cost generation sources online as primary reserves and ensure 
that when renewable resources are plentiful, more expensive generation is ramped down or taken 
offline. 

This Technical Guide describes VRE forecasting (including types, models, and strengths) and the 
development and implementation of forecasting systems. It provides insights that can be used to deploy 
forecasting as a cost-effective tool for integrating VRE power into grids.  

The Guide is organized as follows. Section 2 describes the role and benefits of forecasting. Section 3 
describes the methods used to forecast VRE. Section 4 examines the design and sourcing of a forecasting 
system. Section 5 summarizes the Guide’s main findings.  
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System operators must balance ever-changing loads with generation in real time. They need to know 
what the load is at any given point in time and ensure that adequate generation is available to meet 
demand.  

With traditional dispatchable sources, it is possible to increase generation output to meet increased 
demand and reduce (or even turn off) generators in periods of low demand. Generation and reserves 
are scheduled in the day-ahead energy market in order to balance supply and demand. As increasing 
amounts of nondispatchable renewables come online, system operators face an additional challenge in 
matching supply with demand, in order to avoid curtailment of renewables, load shedding, or poor-
quality power supply. 

VRE forecasting1 helps identify the amount of power that wind or solar PV generators will feed into the 
grid over the next minutes, hours, or days. It converts meteorological variables (solar irradiance and 
wind speed) into solar and wind power outputs. To do so, it uses physical and statistical models to 
assess the meteorological variables or historical generation data and estimate the total plant energy 
output at different time horizons.  

Accurate VRE forecasting contributes to more economical, stable, and reliable operation of power 
systems. It is a relatively inexpensive strategy to enable higher VRE offtake. System operators have 
sought forecasting systems that enable better integration of VRE and lower integration costs since the 
very first wind and solar PV plants joined the system. Generators have also looked to advanced 
forecasting systems to help maximize the use of solar PV and wind plants and increase participation in 
power system dispatch.  

Incorporating VRE forecasting in a power system benefits stakeholders by helping ensure that the power 
system is balanced. For system operators, a forecasting system provides a very valuable service—
sufficient advance notice to either increase power from other sources in the face of an expected 
shortfall from renewable sources or reduce output or turn off other sources during periods of high VRE 
generation. It helps move the entire system closer to a fully merit order–dispatch system, with reduced 
uncertainty and costs around generation supply.  

Considerable improvements have been made in recent years to decrease forecast errors, which reduces 
the requirement of having online generators to provide the regulation support in short-term operation 
and standby generation in medium- to long-term operations. Forecast errors are typically 3–6 percent of 
rated capacity one hour ahead and 6–8 percent for day ahead on a regional basis (Bird et al. 2013).  

Forecasting can significantly reduce system costs if it is effectively incorporated into the system’s day-
ahead and week-ahead planning and operations. Day-ahead generation forecasts can be used to make 

                                                           

1 The basic process is applicable to other renewables with low dispatchability and high variability, such as tidal or 
wave power. Output changes of such plants are relatively predictable and fewer and smaller plants are in operation. 
Hydroelectric power plants are outside the scope of this document. Long-term climatology plays a greater role in 
determining hydropower output than short-term weather events. 



 

day-ahead unit commitment decisions, resulting in operational efficiency and cost savings. Short-term 
forecasts inform the amount of support from a quick-start generator, demand response, or other 
flexibility or mitigation options (Bird et al. 2013).  

Forecasting systems can dramatically reduce system costs, which would be further reduced by faster 
scheduling and dispatch to cope with the intra-hourly variability of solar and wind plants (BOX 2.1).  

BOX 2.1 Examples of reducing system costs through forecasting 

According to data from several wind integration studies compiled in the report Meeting Renewable 
Energy Targets in the West at Least Cost (Regulatory Assistance Project 2012), forecasting could save 
up to $160 million in California (for 12.5 GW of wind power), $95 million in New York State (for 3.3 
GW of wind power), and $510 million in Texas (for 15.0 GW of wind power). The same report also 
states that day-ahead variable generation forecasting would reduce operating costs by $5 billion a 
year in the Western Interconnection system (WECC) spanning Canada and the United States 
(Regulatory Assistance Project 2012).  

A survey of more than 100 integration studies reports that on average forecast errors cost about 
$6/MWh. As penetration of renewables (particularly wind) increases to 30 percent, the cost of 
forecast errors can rise as well, approaching $9/MWh in one location in the United States. Estimates 
vary across countries and locations. In Ireland, for example, the cost averaged €3/MWh with wind 
penetration above 35 percent; in the Netherlands the cost was less than £0.5/MWh (Hirth et al. 
2015). On the integration costs requirements, studies have shown that five- or 10-minute scheduling 
and dispatch have integration costs of $0–$4/MWh, whereas hourly scheduling and dispatch has 
integration costs of $8–$9/MWh or higher (Bird et al. 2013). 

Xcel Energy, a utility serving customers in eight U.S. states, produces almost 30 percent of the 
electricity it supplies to its 3.6 million customers comes from renewable sources. Since 2009 it has 
used WindWX, one of the most advanced wind-production forecasting systems in the world. WindWX 
helped increase the company’s wind forecasting accuracy by 39 percent. Better forecasting and other 
operational improvements saved customers $66.7 million in fuel costs through the end of 2016. 

 

Examples of estimates of cost reductions in developing countries are limited and less detailed than 
examples from developed countries. Although the data are limited, they unambiguously show that even 
modest improvements in forecasting can result in significant reductions in integration costs—and the 
results are robust over a variety of VRE technologies, penetration levels, and costs.  

In Morocco, for example the World Bank–supported Clean and Efficient Energy Program financed the 
construction of a $5 million renewable energy dispatch center that included week-ahead, day-ahead, 
and hour-ahead forecasting for solar PV and wind plants. The relatively modest investment is expected 
to reduce day-ahead unit commitment costs by $10–$17/MWh of VRE (World Bank 2015).  

VRE forecasting can help reduce the gap between the contracted supply of power and the actual 
provision of power, reducing imbalance costs for the generator. More accurate forecast models can also 
enable a generator to bid more confidently and closer to the nominal installed capacity of the plant, 
increasing the effective capacity factor of the plant. From a plant operator’s perspective, having an 
effective forecasting system helps move the entire system closer to a fully merit order–dispatch system, 
reducing the uncertainty and costs of generation. 

VRE forecasting can help facilitate the operation of the system and enable the deployment of 
renewables as a way to achieve carbon emission reduction targets. Several countries, including India 



 

4 | E S M A P . O R G  

(see Box 4.1), have imposed forecasting as a requirement for VRE generation at the plant level or 
require the VRE plant operators to submit an aggregated generation forecasts together with other 
plants. Some impose penalties for high forecast errors. In some cases, all generators above a certain 
capacity must be registered and monitored by central VRE forecasting to facilitate system operation 
with high renewable penetration (BOX 2.2). 

BOX 2.2 Forecasting, controlling, and scheduling renewable energy generation in Spain 

The Spanish transmission system operator Red Eléctrica de España (REE) established the first 
dedicated Control Center of Renewable Energies (CECRE). It is responsible for forecasting, controlling, 
and scheduling renewable energy generation. Thanks to the CECRE and advanced forecasting system, 
the utility can now reliably integrate high levels of renewable energy into the system, reducing the 
amount of CO2 emissions. 

Two features of the regulatory framework favor advanced VRE forecasting. First, VRE plants with 
generation capacities greater than 10MW must be connected to a centralized dispatching center (also 
called a generation control center) or establish their own predictions and execute the operator’s 
orders in real time. VRE generators that charge the regulated tariff are asked to forecast the amount 
of power to be produced one day in advance (with a deadline of one hour before market closing 
time). In 2015 this capacity limit was reduced to 5 MW. The CECRE thus monitors and controls 
production from renewable generation facilities, or groups of facilities, with a power capacity greater 
than 5 MW.  

Second, the generation control centers, which act as aggregators and are authorized as interlocuters 
with the system operator, provide the CECRE with real-time information about every facility every 12 
seconds. Through real-time telemetry, the GCC report on the connection status, production of active 
and reactive power, and voltage at the connection point. If unacceptable situations in the system are 
detected, orders to non-manageable renewable facilities limiting their production is performed in less 
than 15 minutes. 

To address the high penetration of renewables, the CECRE started receiving the tele-measures of all 
wind or solar plants with installed power greater than 1 MW. These measures are supplied as an input 
to the forecasting system. CECRE uses SIPREOLICO, a wind power prediction tool that provides 
forecasts for individual farms for up to a 240-hour horizon. The predictions, based on more than 800 
neural networks, provide aggregated hourly forecasts for individual wind farms. Wind power forecast 
errors have significantly improved, declining from 12 percent for an hour-ahead forecast in 2008 to 4 
percent in 2015. The tool has greatly helped the system operator improve the aggregated VRE 
forecast and reduce the amount of operational reserves it needs to commit for balancing and 
regulation.  

Source: ESMAP (2015); Red Eléctrica de España (n.d., 2016).  

 

  



 

 

 

Forecasting systems use meteorological variables or historical generation data to estimate the total 
plant energy output at any given time horizon.  

Forecasting methods can be broadly divided into physical and statistical methods. Physical methods use 
weather data to populate a physical model of the atmosphere. Statistical methods use historical 
generation data to project plant output. Statistical methods work best for intra-hourly forecasts and up 
to three-hour ahead forecasts. Physical methods are used primarily for forecasting output beyond three 
to six hours, with some exceptions in solar, such as the application of total sky imagers for short-term 
forecasting for cloud prediction (Haupt 2018). In general, statistical models perform better for wind 
energy than for solar energy over short time horizons and physical models show better results for both 
wind and solar over long time horizons (Widén et al. 2015), because statistical models do not do a good 
job of predicting cloud coverage. Physical models sometimes used total sky imagers—digital cameras 
that produce high-quality images to show the entire sky to the horizon—for short-term high-resolution 
forecasting. 

Hybrid forecasts combine results from forecasts produced by multiple methods in a single cohesive 
forecast, which is often more accurate than individual forecasts. TABLE 3.1 illustrates the types of 
forecasts available.  

Forecasting models provide an estimate of the weather parameters at the plant site. Physical or 
statistical methods combine these forecasts with the power curve of a wind turbine or solar PV 
module—either in real-world use or from the theoretical estimate from the manufacturer—to convert 
them into accurate and useful data for system operators that reflect plant responses to meteorological 
forecasts (Foley and others 2012).  

 

Forecasting Models Based on Physical Methods 

Physical methods rely on weather data input (such as air temperature, pressure, and surface roughness 
and obstacles) to create a customized meteorological prediction that matches and represents local 
conditions. Such methods allow a ground-up estimate of power output based on the fundamentals of 
atmospheric science. Numerical weather prediction (NWP) models, remote sensing, and local sensing 
are examples of physical methods of forecasting. 

Numerical Weather Prediction Models 

NWP models use mathematical representations of the atmosphere to predict weather conditions based 
on current weather observations relayed from radiosondes or weather satellites. NWP systems have 
been widely used for forecasting variables such as temperature, humidity, the probability of 
precipitation, and wind.  

NWP models can cover the entire world or a specific geographical area. The selected domain is broken 
up into a grid of areas, each of which is predicted separately using the atmospheric equations. The 
aggregated result is a forecast for the entire domain.  
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NWP models are run repeatedly with slightly different starting conditions, to reflect the chaotic nature 
of atmospheric equations and the uncertainty in measurement of local weather conditions. These 
additional runs, called ensembles, give an indication of the range of forecasts. They increase confidence 
in the forecast (Foley et al. 2012).  

TABLE 3.1 Applications, methods, and resolution of forecasts for various time horizons 

Time horizon Applications Methods Resolution/granularity 

Minutes to 30 
minutes ahead 

• Regulation actions 
(primary and secondary 
reserve) 

• Real-time dispatch 

• Electricity market 
clearing  

• Congestion management 

• Persistence, 
statistical methods 

• Local sensing for 
individual plants  

1–15 minutes 

30 minutes to less 
than 6 hours 

• Secondary reserve 

• Economic load dispatch 
planning 

• Load 
increment/decrement 
decisions 

• Intra-day market 

• Local sensing 

• Remote sensing 

• Satellite imagery 

• Regional or global 
numerical weather 
prediction 

• Physical and 
statistical learning 
methods 

• Artificial intelligence 
methods 

Hourly 

6 hours to 1 day  • Day-ahead operations 

• Reliability assessment 
commitments 

• Operations and 
maintenance (O&M) 
operations 

• Local sensing 

• Remote sensing 

• Regional or global 
numerical weather 
prediction 

Hourly 

1 day to weeks • Scheduling of O&M 
operations 

• Unit commitment and 
reserve requirement 
decisions 

• Maintenance scheduling 
to obtain optimal 
operating cost 

• Remote sensing 

• Regional or global 
numerical weather 
prediction with 
ensemble 

Hourly 

Source: Soman et al. (2010); Wang et al. (2011); and Zieher et al. (2015). 

Typical use. NWP models can help day-ahead forecasting. An ensemble NWP forecast can provide a 
range of expected output to help plan reserves. Longer time horizon forecasts can also be helpful in 
planning operations and maintenance (O&M) schedules. For example, maintenance of a gas-fired power 
plant could be deferred until after a rainy period, once solar generation is available.  

Limitations. Given the size of the discrete areas in even the most sophisticated NWP models—about 10 
square kilometers in a high-resolution model—and relatively infrequent runs, it may be difficult to use 
an NWP model for real-time operations or to model individual plant output (Inman at el. 2013). As 
modern NWP models are computational representations, they are limited by available computing 
resources and must trade off the size of the domain, the spatial resolution of the discrete areas 
modeled, and the forecast horizon. Even the most advanced models are unable to accurately predict 



 

smaller features (such as individual clouds) with certainty. NWP models are not particularly useful for 
solar forecasting in the first three to six hours of most solar PV plants (Widén et al. 2015). 

Bottom line. NWPs provide more accurate forecasts than remote sensing models over longer time 
horizons.  

Remote Sensing Models 

Remote sensing models can help provide good estimates of field conditions over a large area without 
placing a large number of local sensors. These models integrate information from satellite 
measurements of weather from sources such as the National Oceanic and Atmospheric Administration’s 
Geostationary Operational Environmental Satellite Network for North and South America (NOAA 
Satellite Information System n.d.) or the MeteoSat network for Europe, Africa, and central Asia 
(EUMETSAT n.d.).  

Typical use. Remote sensing models capture weather trends over large areas—even entire continents. 
They can consequently be used to show forecasts through the medium term by illustrating cloud 
movement or weather fronts that can affect solar PV or wind turbine output.  

Limitations. Remote sensing models rarely provide the accuracy plant owners require. They are 
therefore usually used in combination with other forecast models. For solar forecasts, these models are 
less effective than others in identifying quick cloud changes (formation or dissipation). 

Bottom line. Remote sensing models provide a simple and cost-competitive approach to medium- to 
long-term forecasting of expected wind and solar output. High-resolution satellite imagery data can 
offer a cost-competitive approach to medium- to long-term forecasting of solar PV output. 

Local Sensing Models 

Local sensing models use weather data from various points at or close to the facility to reflect actual 
field conditions. They capture high-resolution spatial and temporal data to provide information on 
frequency fluctuations of solar irradiance, which NWP and remote sensing techniques cannot. Local 
sensing models require temperature measurements to accurately forecast generation output. 

Typical use. Local sensing is typically used in short-term or real-time forecasts to capture the impact of 
cloud movements on solar PV energy output and local weather patterns on wind output. For wind 
farms, such sensors may be anemometers placed around the farm or at an appropriate place upwind of 
the facility that captures the local micro-climate. Solar PV facilities can use pyranometers or sky imagers 
to provide 3- to 10-minute estimates of solar PV output by illustrating cloud size and movement.2 

Limitations. Sky imagers are of significantly decreasing value beyond approximately a 30-minute time 
frame and are expensive relative to most forms of very short-term prediction (Widén et al. 2015).  

Bottom line. Local sensing models can capture high-resolution spatial and temporal data to provide 
information on fluctuations in solar irradiance and wind. 

 

                                                           

2 Pyranometers can be installed horizontally (to capture global horizontal irradiation) or at the same angle 
as PV panels (to directly measure global tilted irradiation, also called plane of array irradiance). Imagers 
are digital cameras that produce high-quality images that show the entire sky to the horizon. 
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Forecasting Models Based on Statistical Methods  

Statistical methods rely on gathering large amounts of historical data and using them to train models to 
estimate the output of a VRE plant. They are based on patterns rather than mathematical models based 
on physical methods Statistical methods are often used to statistically adjust the output of NWP or other 
models based on physical methods. Statistical methods work best for intra-hourly forecasts and 
forecasts up to three hours ahead, making them important for load following and regulation. When 
combined with other methods, they may also have some value for longer-horizon forecasting (Widén et 
al. 2015).  

Reference Model for Forecasting 

A baseline method for comparison is required (the reference for the forecasting). It is used to predict 
the trend of the forecast using simple methods. This trend then becomes the reference for the more 
complex statistical approaches, which involve the incorporation of factors such as temperature, relative 
humidity, and cloud cover.  

Persistence Model 

Persistence models are the most typical and simplest form of statistical forecasting. In the classical 
persistence model, the forecast of the VRE plant for the next time interval will not change, assuming 
that conditions do not change between the current and the future time (Kleissl 2013). The model 
typically uses average power generation for the last hour or less, adjusted for the diurnal cycle (daily 
variation patterns) in wind speeds, irradiation, or temperature. Combining these data with the outputs 
from a meteorological forecast record (forecasted irradiance or ambient temperature, for example) can 
help build a model that estimates output based on a forecast.  

There are several variations of persistence models. In a damped persistence model, additional factors 
are introduced to improve accuracy. For solar energy, new persistence models based on the stochastic 
aspects of measure energy signals are being developed that could complement the solar forecasting 
family. These models promise to be efficient and easy to implement, because they do not require a large 
volume of historical data (Voyant and Notton 2018).  

Typical use. A classical persistence model is typically used for intra-hour forecasts, particularly for wind, 
where accuracy can reach acceptable levels. Over the first 15–45 minutes, it is often difficult to surpass 
the accuracy of the persistence forecast (Haupt 2018). These models are rarely used for longer-term 
forecasts, as they rapidly lose predictive power when time horizons increase.  

For solar PV plants, several months of hourly insolation data from pyranometers on the site of the plant 
can help determine what the output of a plant might be on any given day. Persistence models are most 
accurate when the sky is clear, because they need to estimate only direct and diffuse insolation at the 
plant. Given relatively limited forecasts but a robust statistical correlation, system operators can 
estimate the range of output with reasonable confidence (Inman et al. 2013).  

Limitations. Persistence model work well for intra-hour forecasts, when conditions do not change. Solar 
irradiance at the ground level and other related atmospheric phenomena are nonstationary, however; 
persistence models therefore perform poorly for time horizons involving appreciable variations in the 
diurnal cycle, limiting their use to intra-hour applications (Kleissl 2013). Large, spread-out facilities may 
be relatively unaffected in aggregate, but individual PV units may see significant decreases in output as 
clouds unevenly reduce insolation. Consequently, the accuracy of persistence models decreases rapidly 
for solar PV in cloudy conditions.  



 

Bottom line. Persistence models provide a reference or trend of the forecasting that is accurate in the 
very short term. They need to be refined by other statistical techniques or hybrid techniques for use in 
longer time horizons.  

Time Series Modelling and Statistical Learning Methods 

Statistical techniques are generally based on mathematical models, which can be classified into causal 
and time series forecasting techniques. Causal forecasting is used to identify relationships between 
variables. It depends on the accuracy of the input factors. Time series forecasting collects observations 
over a designated period of time and then predicts future outputs based on previous events.  

The simplest time series model is autoregressive analysis, which is sometimes used as a reference 
model. Statistical methods that incorporate time series modelling include the auto regressive moving 
average (ARMA), the auto regressive integrated moving average (ARIMA), the Bayesian approach, and 
gray predictions (Chang 2014).  

Typical use. In most time series modelling, a baseline provides the trend of the forecast. Modelling 
refines the random fluctuations around the trend.  

Time series modelling is usually combined with other methods to form more sophisticated models. 
Exogenous inputs should be included, if available, as they reduce the forecast error. In the case of solar 
forecasting, for example, the persistence method would provide the prediction of the clear-sky expected 
value; random fluctuations would be refined through different types of time series modelling. Because 
of the randomness of cloud coverage and the importance of capturing it in short-term forecasting, local 
sensing models such as sky-imaging data from ground-based sky imagers are also used to refine the 
forecasting. They can considerably improve short-term forecast errors, especially for solar forecasting.  

Limitations. A disadvantage of time series modelling is the need for a training period. Ideally, several 
months of data collection are required before deployment (the number of months depends on the 
short- and long-term variability of the micro-climate). Another disadvantage is the reliance on the 
experience of the modeler in finding optimal parameters for the method. This limitation can be 
effectively overcome by artificial intelligence methods (discussed below) (Kleissl 2013). 

Bottom line. Time series modelling can be used to refine physical methods or baseline methods, in order 
to reduce errors and customize the results for short-term forecasting. This method is more cost-
effective than other forecasting methods but also data driven and intensive. 

Artificial Intelligence Methods  

Artificial intelligence (AI) methods can be used to identify the relationship between predicted weather 
conditions and the power output generated as historical time series. These methods are different from 
conventional time series–based statistical approaches. They are based on pattern recognition through 
the use of neural networks rather than regression models.  

One of the most prevalent statistical learning models using AI is the artificial neural network, which has 
proven accurate for short-term wind forecasts and outperforms time series models at all time scales 
(Soman et al. 2010). Artificial neural network models recognize hidden patterns or relationships in 
historical observations and use them to forecast future values (Shi et al. 2011). Other AI methods 
include fuzzy logic, support vector machine, neuro-fuzzy network, and evolutionary optimization 
algorithms, to name a few (Chang 2014). Compared with statistical methods, artificial neural network 
models are simpler to construct, require less development time, and do not require explicitly defined 
mathematical expressions (Bhaskar et al. 2010).  
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Typical use. Artificial neural network and support vector machine models are used primarily in machine 
learning methods. They are well suited to describe the intermittent nature of wind, because they 
consider the nonlinearity of wind power generation. AI methods are often used with other methods to 
improve forecast accuracy.  

Bottom line. AI methods are much more accurate than other statistical learning methods, because they 
model the nonlinear, intermittent nature of atmospheric conditions. They are generally used with other 
methods to increase forecast accuracy.  

 

Forecasting Models Based on Hybrid Methods 

Hybrid forecasts combine physical and statistical methods. They tend to be more effective and accurate 
than either method used separately, because they benefit from the strengths of each method over 
different time horizons. A system operator can use a hybrid forecast to cover the entire time horizon of 
interest, from real-time operations to week-long scheduling.  

Hybrid models for solar and wind power are used in the following combinations (Chang 2014):  

• physical and AI approaches (example: hybrid NWP and artificial neural network model) 

• statistical and AI approaches (example: hybrid AMRA and artificial neural network model)  

• alternative AI models (example: hybrid approach based on combination of artificial neural 
network with wavelet transform).  

The ability to implement multiple layers of optimization in the forecast is one of the major strengths of 
these hybrid approaches, which combine the best features of physical methods with the accuracy and 
robustness of machine learning of the different statistical learning and AI methods. A system operator 
can combine these models and methods, depending on the geographical size and types of VRE in the 
system, or rely entirely on plant operators for expected outputs and charge imbalance costs back to the 
generator, depending on the market structure. 

 

Forecasting Wind and Solar Power 

Both wind and solar forecasts use models to predict variables such as temperature, humidity, 
precipitation, and wind. The methods and models used to forecast energy output from wind and solar 
PV are similar. Both types of forecast depend on the time horizon.  

Forecasting Wind Power  

Wind energy forecasting has been successfully implemented in many power systems, including in 
Denmark, Ireland, Spain, and Texas. Several commercial wind forecasting systems are on the market, 
and extensive research has been conducted on the subject.  

To forecast wind power, it is crucial to calculate the wind speed at the hub height of the wind turbines in 
the most accurate manner. Wind power forecasting combines physical and statistical methods to cover 
different time horizons (FIGURE 3.1). A wind operator may use a persistence model for current 
conditions, remote sensing results for approaching weather fronts, an NWP model to predict wind 
speeds, and a physical method to build an accurate profile of turbine response to wind speed. Models 
can forecast the output of a wind for the next 48 –72 hours with a time step of 1 hour or for the next 6 
hours in 15-minute intervals (Wang et al. 2011). Wind forecasting is used primarily for the immediate 
short term (minutes), the short term (hours to one day), and the long term (up to two days) (Wang et al. 
2011).  



 

Wind forecasting requires data history, often including several years of local field measurements, to 
capture the impact of terrain complexity on wind speed. NWP models are used to estimate wind output 
for the time horizons beyond three hours (add reference). NWP models cannot simulate all local details, 
such as variations in wind speed (Zieher et al. 2015). With the evolution of higher-resolution models, the 
simulation of details (such as fluctuations caused by changing wind conditions) is improving. Neural 
networks have been incorporated in wind forecasting, greatly increasing the forecast accuracy (see Box 
2.2 for an example of wind forecasting that involves neural networks). 

FIGURE 3.1 Framework for forecasting wind energy  

 

Source: Adapted from Widén et al. (2015).  

Forecasting Solar PV Power  

Expansion of the solar market over the last decade has increased demand for accurate solar power 
forecasting. New tools have reduced forecasting errors, but solar forecasting is still a relatively new 
technology.  

Much of the variability and uncertainty is related to quick cloud movement. The main challenge lies in 
estimating the influence that clouds, aerosols, and other atmospheric constituents have on the 
irradiance solar panels receive. Other differentiation is the diurnal variation of the sun. Large errors can 
be introduced during sunrise and sunset, when there are steep changes in irradiation (morning and 
evening ramps). These rapid changes can reduce solar plant output to a minimum within seconds to 
minutes. Solar forecasts also employ sky imagers and satellite imaging (data from networks of 
geostationary satellites to track and predict cloud formations at different timescales.  

Using an ensemble of physical and statistical methods that show values for different time horizons 
increases the accuracy of forecasting solar generation. FIGURE 3.2 shows how a solar PV plant operator 
using a hybrid forecast might display local sensing results for current conditions; remote sensing results 
showing approaching weather fronts; and NWP model results, with an emphasis on cloud formation for 
forecasts longer than six hours. Statistical analyses can help a solar generator relate expected insolation 
to plant output.  
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Source: Adapted from Widén et al. (2015).  

Forecasts for distributed solar PV generation are more difficult to produce. They are most accurate 
when near real-time meteorological data and detailed static data (location, hardware information, panel 
orientation) are available for all interconnected systems.  

 

Accuracy of Forecasts  

Forecasting can significantly reduce the system cost of integrating renewables. The more accurate a 
forecast, the fewer reserves are needed and the less up and down regulation will be activated at the 
expense of the generator or utility.  

It is important to evaluate the past performance of forecasts to understand the uncertainty of an 
upcoming forecast. Evaluation can be done either on demand by the system operator or automatically 
by an on-line performance-monitoring module. 

The accuracy of a forecast depends on the accuracy of the weather forecast and the accuracy of the 
physical or statistical methods used to model output from the plant based on meteorological conditions. 
Factors that affect forecast performance and accuracy include the siting of the plant, the forecast time 
horizon, local weather conditions, the geographic scope, data availability, and data quality.  

Table 3.2 shows the most commonly used metrics and indicative benchmarks of the errors of wind and 
solar plant forecasting. Solar PV and wind systems have opposite behaviors with regard to forecast 
errors. For a wind plant, a benchmark normalized mean absolute error, which varies depending on 
ambient conditions, is 6–12 percent for a six-hour horizon and 10–20 percent for day-ahead forecasts 
(Foley et al. 2012). For solar PV systems, clouds are the primary challenge. Incorrectly forecasting them 
can cause as much as a 30 percent error in an hour-ahead forecast but only about a 10 percent error out 
to four hours (Inman et al. 2013). These errors can be mitigated to a certain extent by using a 
combination of models. Other metrics can help disaggregate errors from inaccurate meteorological 
forecasts from errors associated with physical and statistical method issues that are within the purview 
of the generator or system operator. 

FIGURE 3.2 Framework for forecasting solar energy  

?] 



 

TABLE 3.2 Common metrics used to assess forecasting error equations and benchmarks 

Forecasting error Description Benchmark 

Normalized mean absolute error 
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Helps system operator understand the 
total error for a plant and plan reserves, 
as it is possible to sum the errors over all 
plants in the system.  

Wind: 6–12 percent for a six-
hour forecast, 10–20 percent for 
day-ahead forecasts 

Mean absolute percentage error 
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Helps system operator concerned about 
system stability if renewable output drops 
below forecasted output.  

Solar: 30 percent for hour-
ahead forecast, 10 percent for 
four-hour ahead forecast 

Root mean square error  
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𝑵
 

Measures the average accuracy of 
forecasts without considering the 
direction of the error; gives heavier 
weight to large errors. Helps illustrate the 
spread of errors, which increases 
confidence in the range of forecasts. 

Wind: 7–19 percent for 
intermediate to short-term 
forecast; in China 11.7 percent 
for regional forecast, 16– 19 
percent for single farm  

Source: Foley et al. (2012); Inman at el. (2013); and Wang et al. (2011).  

The accuracy of wind and solar forecasts increased considerably over the last decade, as technological 
developments improved the models and more historical data became available for analyses. Wind 
energy has reached impressive accuracy levels for day-ahead and hour-ahead forecasts. Errors for 
longer-term forecasts, such as a week ahead, remain relatively large.  

Single-site wind forecasts errors fell 50 percent in a decade for both day-ahead and hour-ahead 
forecasts (Figure 3.3). Aggregating forecasts across a larger geographical area, to produce system level–
wide forecasts, reduces errors even more.  

FIGURE 3.3 Single-site and regional forecasting errors, 2006–15 

  

Source: © Vaisala 2015. Used with the permission of Vaisala. Further permission required for reuse. 
 

Forecast accuracy can be improved by (a) customizing methodology to account for local conditions and 
system operator needs and (b) using large amounts of historical data and high-performance 
computational resources. For example, the power curve of a VRE plant can be modeled using learning 
algorithms, regression methods, or curve fitting. The model will be “trained” with the available historical 
data, producing a fairly accurate output forecast, adaptable to changes in the power plant. BOX 3.1 
presents an example from Denmark.  
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BOX 3.1 Using online measurements and historical data to improve the accuracy of wind forecasting 
in Denmark 

Energinet, the Danish transmission system operator, forecasts future wind power generation based 
on two categories of information: input from an NWP model calculation and hourly online wind 
measurements. Denmark is divided into 25 areas for the purpose of the model calculation. The NWP 
calculates a forecast for wind power generation in each area based on input parameters such as wind 
speed, wind turbine generation data, installed capacity, and expected electricity prices. The forecast 
is calibrated using historical wind data and adjusted to reflect the fact that lower electricity prices 
reduce the wind power generation being offered for sale. As the delivery hour draws near, the 
forecast can be significantly improved using on-line wind speed measurements from the 
anemometers installed at about a third of Danish wind turbines. Using online wind speed 
measurements, the forecast can be updated at five-minute intervals in each of the 25 areas. The aim 
of the online measurements is to estimate the future error of the model calculation, in order to 
calculate a more accurate forecast.  

Source: Energinet (2015). 

  



 

 

 

The first VRE forecasting system in United States was installed in in California in 2004 by the California’s 
independent system operator (CAISO), primarily for wind energy. Since then several dozen system 
operators and a significant number of generators have deployed VRE forecasting systems.  

Deploying a forecasting system in an existing management system requires careful planning and 
familiarity with the forecasting system architecture to be able to inform the most appropriate option for 
a power system. This section summarizes some of the key points of such systems from the viewpoint of 
the system operator. For a generator, the overall architecture will be similar, but the exact functions and 
interactions between systems might change.  

BOX 4.1 Combining centralized and decentralized forecasting in India 

In 2015, India proposed a framework on forecasting, scheduling, and imbalance handling for wind and 
solar at the interstate level (Cercind 2015). It stipulates that both generators and the concerned 
regional load dispatch centers issue wind and solar forecasts. The entities’ forecasts have 
complementary objectives. The grid operator forecast is the basis for a secure grid operation 
including ancillary services requirements; the renewable energy generator forecast is the basis for 
scheduling.  

The procedure for the framework on forecasting for VRE generating stations became active in 2017 
(POSOCO 2017). It requires that solar and wind generators provide the system operator with the 
following information: 

• Day-ahead available capacity, day-ahead forecast (based on own forecast or forecast by 
regional load dispatch centers), and day-ahead schedule, all at 15-minute intervals. On the 
day of actual generation, if any, the generator provides revisions of the availability and 
schedule. 

• Real-time availability (at turbine/inverter level) and generation data (at substation level). 

• Monthly data transfer to system operator (average winds speed and generation for wind 
plants at the turbine level and average solar irradiation and power generation for solar plants 
for all inverters, all at 15-minute intervals).   

Action 

A European company provides advanced weather forecasts services for more than 1,000 locations in 
India, including wind farms, large solar parks, and solar PV rooftops. It provides high-resolution data, 
with one-minute resolution for the next few hours and hourly resolution for up to a week for wind 
speed and direction at different height levels, solar irradiance at surface level, temperature, visibility, 
wind gusts, probabilistic forecasts, and other weather variables. The information, which is updated 
four times a day, is used to provide forecasting and scheduling services to solar and wind independent 
power producers in India.  

Outcome 

Integration of better VRE forecasting leads to better VRE management, which reduces fuel costs and 
improves system reliability, among other benefits. 
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Designing a Forecasting System  

One of the design features of a forecasting system is whether the forecasting will be centralized 
(performed by the system operator) or decentralized (performed by plant operators) who feed the 
forecasts back to the dispatch center. Each method has benefits and challenges based on the type of 
information available.  

The system operator requires a holistic view of the power system to ensure its safe operation, 
determine ancillary services and reserve margins, and so forth. A centralized forecasting system will 
result in more consistent (though not necessarily more accurate) results, because the same models and 
approaches will be used across the system. The system operator may also have access to information 
from a large number of plants across geographically dispersed locations that can help improve the 
forecast. A larger number of plants also results in scale economies on a per plant basis. However, a 
centralized system may have systematic biases that distort the forecast, either system-wide or for 
individual plants that do not conform precisely to the model’s assumptions.  

A decentralized forecasting system may be better able to model individual plant output, but it lacks the 
benefits of the centralized approach. Individual plant operators have more precise information about 
the availability and real-time generation of the plant. A decentralized approach also provides more 
freedom to innovate the models to improve accuracy or reduce computing needs or increase the local 
spatial resolution of the model (NERC 2010).  

Centralized and decentralized forecasting are complementary, not mutually exclusive. In India, for 
example, both the regional load dispatch centers and the VRE generators are required to issue forecasts 
(BOX 4.1). 

Basic Components of a Forecasting System 

A forecasting system must convert the raw forecast data from various models into a flow of information 
useful to the system operator. The major components of a typical IT-based forecasting system include 
the following (Figure 4.1): 

• front end/user interface (allows users to interact with the forecasting system) 

• back end (connects components of a forecasting system) 

• IT integration layer (enables communication within the forecasting system and with other 
systems) 

• data repository (contains working data for the forecasting system) 

• model engine (generates plant output forecasts based on the model). 
  

To produce a forecast, the integration layer passes the forecast request and data from the back end to 
the model engine. Depending on the parameters of the request, the model engine executes with 
different time horizons, spatial resolution, or domains. The integration layer must also ensure that the 
engine receives all the data, correctly formatted, it needs to carry out the forecast. The integration layer 
receives the results of the fore end and updates other systems as necessary. 

Front end. The front end provides a user interface for interacting with the forecasting system. It allows 
the user—in this case the grid or plant operator—to manage the system configuration; enter plant 
technical and geographical details; load meteorological observations and forecast data from external 
providers; enter upcoming O&M schedules; view the forecasted power output and uncertainty of the 
forecast; schedule the creation or retrieval of a forecast; and interact with other systems that rely on 



 

forecast output data, including Supervisory Control and Data Acquisition (SCADA)/Energy Management 
Systems (EMSs), dispatch, and market systems.  

Back end. The most critical back end functions are system and data management. Ensuring that data are 
correct and available to other processes is essential to the functioning of the entire system. The back 
end also schedules and executes the processes involving data analysis and communicates with other 
components of the forecasting system. 

FIGURE 4.1 Major components of a forecasting system 

 

 

Integration layer. The integration layer enables connection of the forecasting system to other systems 
run by the operator or other parties. It therefore must be developed in a way that lends itself to easy 
extension and connection to other systems as other components evolve and requirements change. For 
example, it may be necessary to provide a standardized application programming interface to other 
systems and ways to transfer data to other systems automatically and on demand, through a file 
transfer protocol (FTP) portal, web services, or even email. The integration layer address requirements 
of several system stakeholders and is responsible for ensuring proper access control for all users of the 
data and to the forecasting system itself. Users of the integration layer include the following:  

• the forecasting system operator, which uses the integration layer to run the system and to 
transfer data to and from the front and back ends, the repository, and the model engine 

• plant operators, which feed technical, upcoming availability, and O&M data to inform the 
forecast 

• regulators, which provide oversight 

• external data providers, such as meteorological agencies, which provide meteorological data for 
the forecast 

• other interconnected systems run by the operator, including SCADA/EMS 
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• other system operators, which rely on the forecasting system to provide data or forecasts from 
the operator. 

 
Data repository. The data repository serves as the central storage for all data needed by the system to 
make forecasts. Given the critical importance of the data, the different types and uses of data, and the 
size of the dataset, the repository must be flexible while remaining resilient to corruption and attack. 
Data include plant technical specifications; market data; weather data (forecast and observed); plant 
operating data (including production, wind speeds, and total insolation); and outputs (historical and 
forecast). 

Model engine. Given the size, complexity, and computing requirements of most models, the model 
engine is usually separated as a standalone modular component. Separation permits swapping the 
engine to allow the use of newer and more accurate models, more detailed resolution models, 
additional computing power rented from other providers, and other types of flexibility. For example, an 
external forecast from the model engine provided to the user through the front might be replaced by a 
tailored in-house model based on software like SPSS, with significantly different data and processing 
needs. BOX 4.2 shows an example from Australia. 

BOX 4.2 Using wind and solar energy forecasting systems in Australia 

The Australian Energy Market Operator (AEMO) manages both wholesale and retail electricity 
markets across eastern and southeastern Australia and oversees the vital system operations and 
security of Australia’s national electricity market.  

Action 

Over the last decade, AEMO developed wind and solar energy forecasting systems, in response to the 
growth in VRE generation and the impact that growth was having on forecasting processes. The 
system aims to provide better forecasts that will drive improved efficiency of the national dispatch 
and pricing and permit better network stability and security management. Implementation of solar 
and wind forecasting had two broad objectives: facilitating the operation of the market through more 
accurate wind and solar generation forecasts and facilitating research to improve the quality and 
dimension of the forecast. 

AEMO hosts the system and maintains its interface with existing market systems to give data access 
to the market and to individual wind farms. Data access is also given to researchers who sign a sub-
licensing agreement and provide appropriate confidentiality arrangements. 

The models produce forecasts from the following inputs: 

• real-time SCADA measurements from wind farms 

• Global weather forecasts from NWP models 

• standing data from wind farms and solar power stations 

• availability information provided by wind farms, including turbines under maintenance and 
upper MW limits on the wind farm 

• additional information provided by the solar power station, including inverters under 
maintenance and upper MW limits on the solar farm. 

Wind and solar generation forecasts are provided for all wind farms and solar power plants that 
produce at least 30MW of power for all forecasting time frames, as follows: 

• 5-minute ahead dispatch 



 

• 5-minute pre-dispatch: 5-minute resolution looking out one hour ahead, updated every 5 
minutes 

• pre-dispatch: 30-minute resolution up to 40 hours ahead 

• short-term projected assessment of system adequacy: 30-minute resolution seven days ahead 

• medium-term projected assessment of system adequacy: daily resolution two years ahead. 
 

In 2016, AEMO implemented a solar forecasting system for small-scale (less than 100kW) solar 
installations. It uses a combination of statistical and physical methods and NWP-based models to 
produce aggregated regional solar generation forecasts for small-scale PV systems. 

Source: AEMO (2017). 

Data Requirements for Plant Production Forecasts 

To increase the accuracy and completeness of the forecast, a typical forecasting system requires 
significant amounts of data on the status of plants, meteorological conditions, and O&M. Although the 
list provided in Table 4.1 is not comprehensive, it provides insight into the level of data required to 
develop an accurate power output forecast.  

TABLE 4.1 Data requirements for forecasting production at a variable renewable energy plant  

Indicator Required Useful 

Plant data 

Geographical coordinates of all plant sites  ✓  

Installed capacity (nominal power) of plants ✓  

Basic technical data on wind power plant turbines or PV units (rated power, hub height, rotor 
diameter, environmental specifications) 

 ✓ 

Observed meteorological data (at least hourly time resolution) 

Air temperature at specified height, relative humidity at specified height, atmospheric pressure 
at surface 

 ✓ 

Wind: Data from 50-meter mast and wind speed and direction at specified height  ✓ 

Solar PV: Global horizontal irradiance or global tilted irradiance, whole sky-image  ✓ 

Operating data (at least hourly time resolution) 

Power output of plant from SCADA and metering data ✓  

Installed capacity ✓  

Plant power availability (operating output range, by turbine or PV unit)  ✓ 

Wind: Turbine data, including active power, temperature at nacelle level, wind speed measured 
by nacelle anemometer, wind direction measured by nacelle wind vane, and machine status 

 ✓ 

Solar PV: Individual element data, including active power and temperature  ✓ 

Historical data (at least three months at hourly resolution) 

Statistical method models: Detailed meteorological data and output ✓  

Upcoming data 

Meteorological forecast: Wind speed, wind direction, and precipitation ✓  

Meteorological forecast: Air pressure, temperature, humidity, cloud coverage, and radiance  ✓ 

Scheduled plant reduction in output or downtime ✓  

SCADA/EMS and meteorological agency records capture most of the data required for forecasting. In a 
vertically unbundled marketplace, historical output data are likely available from the power market 
operator, which is required to pay operators for generated energy. 
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Sourcing a Forecasting System 

Most countries have commercial VRE forecasting systems. Off-the shelf forecasting systems or systems 
for each component can be developed in-house or purchased commercially, as long as they are well 
integrated, through a comprehensive and flexible integration layer that allows interaction with all 
systems.  

Off-the-shelf forecasting systems are bundled as a package. Rather than use them, many system 
operators prefer to use different suppliers for different components of the forecasting system, for cost, 
performance, or applicability reasons. An operator could, for example, purchase the front and back end 
from an existing SCADA vendor, contract with a storage provider for hardware and maintenance of the 
data repository, build a custom integration layer that interacts with both the new forecasting system 
and existing SCADA systems, and buy a forecasting as a service from a provider. Table 4.2 identifies the 
pros and cons of three major options. 

TABLE 4.2 Pros and cons of three options for sourcing a forecasting system 

System type Pros Cons Comments 

Self-developed 
system 

Provides flexible, highly 
customizable, continuous 
improvement. 

Takes time and qualified in-
house personnel to develop; 
feature additions can be 
expensive]. 

Costs are driven primarily by 
personnel costs and the costs 
of acquiring commercial 
weather forecasts. 

Commercial 
provider 

Provides reliability, 
security economies of 
scale, and integration 
with existing systems. 

Is expensive, lacks flexibility, 
takes time to set up. 

Estimated cost includes 
license and system set-up 
only; costs for hardware, 
which can be significant, are 
not included. 

Forecast as a 
service 

Provides simple, flexible, 
worldwide availability, at 
low cost. 

Black box, proprietary data are 
sent off-site for processing and 
retention. 

Discounts may be available 
for more plants. Costs are 
extrapolated from European 
experience. 

 

In-house development. Self-developed systems offer an operator the most flexibility, but they may 
require a significant amount of qualified in-house technical skill. Depending on the level of sophistication 
of the system and available existing resources, system costs may vary significantly—and the operator 
bears the cost of all maintenance and feature additions.  

If the operator already has a significant investment in information and operational technology—for 
example, a SCADA system with integrated EMS billing, planning, and management functions—adding an 
additional module for forecasting may not be very challenging, as many of the data required for an 
effective forecasting system are already collected in these systems and can be channeled to the 
forecasting system. Adding a forecasting module may therefore be as simple as integrating some 
publicly available models and ensuring that data are available to support the models. 

Commercial systems. Commercial systems can be sourced from companies that also offer EMS or BMS 
software. Many operators already have some level of SCADA/EMS or BMS active, which they purchase 
from a company that specializes in such hardware and software. These companies sometimes offer 
forecasting as part of a system package bundled with production EMS software. For example, to conduct 
transactions on a day-ahead market, energy trading software may offer a module to help forecast 
production.  



 

The costs of such systems are clearly defined compared with self-developed systems, but licensing costs 
are relatively high and implementation costs may be considerable. Ongoing licensing and operational 
costs can scale linearly with every additional turbine and PV unit; if the system is already in use for other 
purposes, add-ons may be free or relatively inexpensive. 

For companies that require on-premise systems for security or reliability reasons, commercial systems 
offer the ability to run on hardware at the operator’s site. Most commercial providers also offer 
installation and ongoing maintenance contracts at an additional fee, increasing the cost certainty for a 
system operator. Customizability is limited, however, and costly if offered at all. 

Various vendors have modules or systems that provide VRE power production estimates. Some offer on-
premise modules, others carry out model calculations offsite in a vendor-owned computing facility. 
Some of these systems also provide other types of EMS facilities. Many vendors offer both wind and 
solar energy forecasting; others offer only wind forecasting. 

Forecast as a service. A large and growing number of meteorological data providers and other 
companies offer plant and system operators the option to send required data to them and receive the 
forecast production data back. In a forecast-as-a-service model, the provider works with the operator to 
define the kinds of forecast options needed and determine what data are required from the operator 
and at what time resolution. The operator-provided data are then run through a sophisticated and 
constantly improving model at the provider’s site to generate the required forecast data. The forecast 
provider can also either generate its own meteorological forecast or acquire it for a fee from another 
company as an input to its model. The estimated power production forecast is then sent back to the 
operator and used to inform the rest of the operator’s system management tools. Data transfers happen 
either manually through a portal that can be triggered on-demand by the operator or through 
automated transfers using standardized programming interfaces. 

Such services tend to charge by power plant per year, meaning that costs scale not with individual wind 
turbine or PV units but rather with the number of plants providing energy. Higher time resolutions or 
increased complexity can drive up operational costs. Start-up costs are also usually needed to integrate 
the data into an existing EMS. While the operator is likely to receive even better forecasts as the 
provider improves the model, customization may be difficult for forecast-as-a-service providers, because 
the forecast provider is banking on scale efficiencies in the development of the model and provision of 
service.  

Different countries have taken different approaches to forecasting. In the Republic of North Macedonia, 
a commercial provider carries out the VRE forecasting for the system operator as a service (BOX 4.3). In 
South Africa generators contract a forecasting service directly to provide forecasts to the plant operator 
(BOX 4.4). 

BOX 4.3 Using a commercial provider to forecast variable renewable energy in the Republic of 
North Macedonia 

The Republic of North Macedonia has more than 100MW of wind, solar, and small-hydro (run-of-the-
river) capacity, distributed in more than 120 power plants across the country (peak demand in 
Macedonia in 2015 was 1,440MW)—and the government is taking steps to increase the share of 
renewable energy sources in the country’s energy mix. Renewable energy producers that obtain the 
status of preferential producers are entitled to certain benefits, including priority.  

The transmission system operator (MEPSO) is the single buyer of renewable energy from preferential 
producers, which it sells to suppliers and traders. MEPSO also prepares and publishes final forecasts 
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for electricity generation Each renewable energy producer submits generation schedules and is 
financially responsible for deviations (Energy Community 2017). 

Action 

Since 2015, MEPSO has used short-term power forecast as a service (day ahead and week ahead) for 
daily improvement of forecasting accuracy.  

Outcome 

MEPSO uses a cloud-based graphical interface to monitor renewable output signals to ensure grid 
stability in the network and optimal balancing throughout the countries. Standardized renewable 
energy forecasting contributes to the smooth and cost-efficient operation of the electric power 
system. 

 

BOX 4.4 Using third-party forecasting services in South Africa 

By law, South Africa’s renewable energy generators are required to submit to the national 
transmission system operator (Eskom) the following information: 

• Day-ahead MW forecasts, with hourly resolution, and the available MW for a week. Forecasts 
are submitted daily before 10:00 a.m. 

• Intra-day forecast MW, with hourly resolution, and available MW. Forecasts are submitted 
10–20 minutes before each hour. 

Action 

Since 2014 a solar PV monitoring system provider has provided forecasting services to individual 
renewable generation plants for hour-, day-, and week-ahead time horizons. In real time, the NWP 
and monitored power plant output signal feed in a customized statistical model of each plant to 
forecast power, providing nowcasting services that yield a more accurate forecast for the next six 
hours, updated every hour. This service enables power plant owners to use real-time data from their 
monitoring systems to update their power generation forecast hourly, complying with the 
requirement in the South African grid code (Grid Connection Code for Renewable Energy Version 2.9).  

Outcome 

Renewable power producers can provide hourly intra-day and day-ahead power forecasts to inform 
Eskom of the upcoming power injection to the grid. 

Companies in Australia, Demark, Germany, Ireland, Spain, and other countries provide these services. 
Most providers offer coverage only in a handful of countries (Australia, some countries in Europe, and 
the United States), because of their familiarity with meteorological forecasts in those countries.  

  



 

 
 

Wind and solar forecasting are cost-effective operational solutions to manage the variability and 
uncertainty of VRE generation. An VRE forecasting system with advanced functionalities can blend 
physical and statistical methods and use inputs from satellites, radar systems, ground-based weather 
stations, and sensors. VRE forecasting at different time scales informs system operations and provides 
an important decision support foundation for running the grid with renewable resources. Installing and 
using a state-of-the-art forecast system provides benefits to grid operators, VRE generators, and power 
systems at large.  

Wind energy forecasting is a well-established industry. Several commercial systems and services are in 
the market, and much research has been conducted. Solar power forecasting is still relatively new, 
especially for ultra-short-term forecasting, but it is showing promising results, thanks to technological 
developments.  

Several factors affect forecast performance and accuracy, including the siting of the plant, the forecast 
time horizon, local weather conditions, the geographic scope, data availability, and data quality. 
Weather forecasting technological developments and the growing availability of historical data have 
helped improve models, increasing the accuracy of VRE forecasting. Competition among commercial 
providers has driven improvements in VRE forecasting.  

Forecasting is an effective and relatively inexpensive tool to increase the penetration of renewables in 
an electrical system. It can be carried out centrally (by the system operator) or in a decentralized way 
(by plant operators). The two methods are complementary; using them in parallel yields the greatest 
benefits, as it takes advantage of the different information provided by the system operator and plant 
operator.  

Advanced VRE forecasting systems can be sourced in various ways. For maximum flexibility, operators 
can develop their forecasting systems in house. Alternatively, operators can purchase forecasting as 
additional software modules of an existing EMS or as a service.  
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